If we think of the Arts and Science then I think, for the most part, that people would think of them as opposites. People are either ‘arty’ or ‘science-y’. A large factor in this thinking may come from the fact that people are seen as left-brained or right-brained, where one side of the brain is dominant. Left-brained thinkers are said to be methodical and analytical, whereas right-brained thinkers are said to be creative or artistic. What should happen, though, if you were able to work across these two separated sides and create whilst you analyse?

Do we need to get out of this thought, that art and science don’t belong together? I would firmly argue that we do.

The acronym STEM is widely known as Science, Technology, Engineering and Mathematics. However, another acronym, possibly less well known, is STEAM. STEAM is Science, Technology, Engineering, (liberal) Arts and Mathematics. This represents all aspects of art such as drama, music, design, media and visual arts. STEM primarily focuses on scientific concepts, whilst STEAM investigates the same concepts, but does this through investigation and problem-based learning methods used in an imaginative process.

The application of the arts to science is not a new practice Leonardo DaVinci is an early example of someone using STEAM to make discoveries and explain them to several generations.

There are many advantages to applying the arts to science and engineering. For example, would increasing application of the arts to science and engineering make more young people want to do science and engineering as it looks visually more attractive and significant? Could it help them develop a love for the STEM subjects and support them to seeing it as being more relatable than a Bunsen burner in a school laboratory.

Having recently completed a creative thinking course taught by the Dyson School of Design Engineering at Imperial College London, it really made me consider how I already think compared to how I could think and apply my creative abilities towards not only design but to the beginning of concepts.

A prime, and very recent, example of STEAM being applied was the crewed Space-X launch of the Dragon capsule a few days ago. This launch represents the essence of advanced technology that is both on the forefront of science and engineering development as well technological aesthetics. From the design of the sleek logos, through to the futuristic spacesuits and even continuing onto the matt black launch platform, it was clear throughout this launch that every single detail had been considered.

Some may argue that by adding this artistic touch to technology that the ‘nitty-gritty science’ of the design and aesthetic becomes lost. If something doesn’t ‘look’ complicated and complex can it really be advanced or sophisticated? Well yes! Have you ever heard the saying “when someone makes something look simple, they have spent hours perfecting it” Take for example the space suits and touch screen controls of the Dragon SpaceX launch. The suits look like they were designed for a film set of Hollywood’s rendition of Space travel. A spacesuit without oxygen inlets, pressurized helmets and fitted to individual body contours.

To the layman, these may simply look like pleasant visuals. Though, to the trained eye and relevantly knowledgeable mind the pure fact that these two components of the flight look so streamline and simplistic not only nods to but reinforces that all aspects of the flight was saturated in superior engineering from hundreds of magnificent minds. That is the beauty of STEAM.

So, the next time we’re designing, creating or innovating, we should really consider; are we letting off enough STEAM?

 

Image: “Space shuttle launching from launchpad” – Freerange Stock