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Stretchable e-skin and transformer 
enable high-resolution morphological 
reconstruction for soft robots

Delin Hu1, Francesco Giorgio-Serchi2,3, Shiming Zhang4 & Yunjie Yang    1 

Many robotic tasks require knowledge of the exact 3D robot geometry. 
However, this remains extremely challenging in soft robotics because of the 
infinite degrees of freedom of soft bodies deriving from their continuum 
characteristics. Previous studies have achieved only low proprioceptive 
geometry resolution (PGR), thus suffering from loss of geometric details 
(for example, local deformation and surface information) and limited 
applicability. Here we report an intelligent stretchable capacitive e-skin to 
endow soft robots with high PGR (3,900) bodily awareness. We demonstrate 
that the proposed e-skin can finely capture a wide range of complex 
3D deformations across the entire soft body through multi-position 
capacitance measurements. The e-skin signals can be directly translated 
to high-density point clouds portraying the complete geometry via a deep 
architecture based on transformer. This high PGR proprioception system 
providing millimetre-scale, local and global geometry reconstruction 
(2.322 ± 0.687 mm error on a 20 × 20 × 200 mm soft manipulator) can 
assist in solving fundamental problems in soft robotics, such as precise 
closed-loop control and digital twin modelling.

The neuro-proprioceptive system of animals mediates the perception 
of the body’s geometry, constituting the prerequisite for precise and 
fast limb coordination during locomotion and interaction with the 
environment1. Similarly, the dexterous manipulation of intelligent 
robots relies on the body’s geometry estimation from the artificial 
proprioception system. Within the frame of conventional rigid robots, 
existing sensing technology already provides viable solutions to imple-
menting body’s geometry estimation that meets the requirements of 
even the most agile and complex robotic platforms. This is due to the 
inherent predictability of the rigid-body system, whose finite degrees 
of freedom allow the full geometry to be defined by a bounded set of 
measurable parameters (such as joint angle and link length). However, 
the development of artificial proprioception systems for highly deform-
able structures, such as soft robots, remains a fundamental challenge, 

severely restricting the understanding of soft robot behaviour and, 
ultimately, the capability to perform precise closed-loop control2,3.

The highly deformable nature of soft robots represents their asset 
as well as their drawback. The bodily compliance of soft robots may 
provide an answer to the limits of conventional robots with respect 
to safety, adaptability and operational flexibility4,5, thus highlight-
ing their spontaneous vocation for biomedical applications6–8 and 
human–robot interaction9–11 as well as their employment in unstruc-
tured, potentially cluttered scenarios. However, this very feature 
also gives infinite degrees of freedom to a soft body. It is infeasible 
to completely describe the three-dimensional (3D) morphology of 
a soft system with only a limited set of parameters4,12. The number 
of independent parameters used by a soft proprioception system to 
describe the body geometry determines the smallest size of geometric 
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Results
Design of the e-skin in virtual environment
Different from conventional parallel capacitive sensors frequently 
used in many previous studies2,18, the design of SCAS is inspired by 3D 
ECT sensor and its sensing strategy21. 3D ECT has demonstrated that 
the capacitance readout of a boundary electrode pair is related to the 
permittivity of the medium within the sensitive region and its geometry. 
In soft robot proprioception, the permittivity remains constant. The 
change of capacitance primarily reflects geometric variations and, 
therefore, can be used to infer local and global deformations.

We first design the SCAS in the virtual environment and quantify its 
performance, before its physical implementation. The virtual SCAS has 
a redundant layout of planar stretchable electrodes (the 64-electrode 
SCAS) to characterize the 3D deformation of the entire soft body (Sup-
plementary Fig. 2). We implement 3D solid mechanics and electrostat-
ics coupling field (3D-SECF) simulation to simultaneously model the 
e-skin response and soft body deformation. Considering the need to 
test the broadest range of possible deformations that are not achiev-
able in a fully internally actuated system, we adopt a square cylindrical 
soft manipulator actuated by external forces as the testbed. Supple-
mentary Fig. 2a shows the geometric structure and electrode layout 
of the 3D-SECF model.

Any two SCAS electrodes can form a capacitor, and the capacitance 
is sensitive to electrode deformations. The 64-electrode SCAS can 
theoretically produce 2,016 independent capacitance readouts in one 
measurement frame (select two electrodes to form a capacitor, that is, 
C264 = 2,016). We record only capacitances formed by electrodes in the 
same layer and those between two adjacent layers to ensure that they 
are practically measurable. Each SCAS measurement frame comprises 
392 independent capacitance readouts (for measurement strategy 
details, see ‘Solid mechanics and electrostatics coupling field simula-
tion’ in Methods and Supplementary Fig. 2). We argue that capacitances 
formed by these non-redundant combinations of SCAS electrodes 
contain sufficient information to portray full-geometry deformations 
as their receptive fields cover the entire soft body.

Dynamic 3D-SECF simulation allows to mimic a wide range of 
deformations and corresponding e-skin responses. We therefore gen-
erate a large-scale virtual proprioception dataset containing 39,334 
samples (for details, see ‘Solid mechanics and electrostatics coupling 
field simulation’ in Methods). Each sample consists of a 3D point cloud 
with 1,716 points representing the deformation and corresponding 
392 capacitance readouts. The deformations are driven by different 
external force loads, which can be divided into four different catego-
ries according to the types of external force loads, that is, the com-
pound deformation of elongation and twisting L(z, r), pure bending L(x, y), 
two-phase twisting and bending Lr,(x, y) and the compound deforma-
tion of twisting and bending L(x, y, r). Simulation results show that SCAS 
signals can reflect the soft robot geometric variation under various 
complex deformations (Supplementary Fig. 3), indicating its feasibility 
as proprioceptors. We then leverage the virtual proprioception dataset 
to quantify the SCAS performance in high PGR full-geometry 3D defor-
mation reconstruction. The results are utilized to optimize the design 
of the physical SCAS and learning-based proprioception algorithms.

C2DT
We employ 3D dense point clouds to represent the full-geometry 
morphology of the soft robot arm. We then consider deformation 
reconstruction as a set-to-set problem, mapping a SCAS signal set 
consisting of 392 capacitance readouts to its corresponding point set 
(a point cloud) in 3D space. Therefore, we propose a C2DT based on 
self-attention mechanism22 that is widespread in natural language pro-
cessing23,24 and computer vision25,26 and shows superior performance 
in solving set-to-set problems. The framework of the C2DT is shown 
in Fig. 2a. C2DT infers the displacement of each point in the source 
point cloud (the one without deformation) from the proprioceptive 

variations that can theoretically be detected and presented by the 
system. Generally, the greater the number of independent parameters, 
the finer and more accurate the geometric variations can be described. 
Therefore, we define the number of such independent parameters as 
the proprioceptive geometry resolution (PGR). Soft proprioception 
systems with higher PGR are desirable for soft robotics as they can 
endow soft systems with bodily awareness more comparable to that 
of rigid robots, thus enabling more natural interaction with humans 
(for example, real-time 3D geometry of a soft robot can be visually 
observed without the line of sight, allowing users to operate robots 
intuitively even in occlusion environments) and underpinning precise 
closed-loop control.

To the best of our knowledge, there is no off-the-shelf high PGR 
soft proprioception system. Previous studies are focused on low PGR 
proprioception, limiting their capability to preserve geometric details 
(for example, local deformation and surface information) and their 
usage in practical application scenarios (for detailed comparison, 
see Supplementary Table 1)3,12–20. For example, combined with the 
mathematical model of the soft robot under investigation, an optical 
fibre-based proprioception system can successfully reconstruct the 
3D geometry on the basis of two parameters14, that is, global bending 
and twisting angles (PGR 2). However, the low PGR fails to describe 
local geometric variations (for example, bending of a robot segment) 
and is applicable only to a fixed bending direction and twisting axis 
(Supplementary Fig. 1). Some recent studies attempt to build soft 
proprioception systems with higher PGR by optimizing sensor design, 
introducing advanced machine learning algorithms (for example, 
long short-term memory (LSTM) networks) and employing 3D motion 
capture devices (for example, tracking cameras)3,12,17. Redundant poly-
dimethylsiloxane (PDMS) impregnated with conductive carbon nano-
tubes (cPDMS) sensors with LSTM can estimate 3D coordinates of a 
soft fingertip (PGR 3)12. The simplified 3D geometry (described by nine 
parameters) of a trunk-shaped soft robot can be recovered through 12 
conductive silicone-based piezoresistive sensors distributed on the 
robot body (PGR 9)3. The 3D deformation of a four-chamber pneu-
matic membrane (described by 49 visual markers) is reconstructed 
using LSTM and integrated optical sensors (PGR 147)17. Despite these 
recent advances, obtaining high PGR across a wide range of complex 
deformations remains unrealized.

In this Article, we propose a high PGR (3,900) proprioception 
system to confer full-geometry, millimetre-level bodily awareness to 
soft robots. The proprioception system encapsulates an intrinsically 
stretchable capacitive e-skin (SCAS) and a purpose-designed neural 
architecture (that is, the capacitance-to-deformation transformer, 
C2DT). Inspired by 3D electrical capacitance tomography (ECT) 21, 
the SCAS has four different functional layers (Fig. 1a) and employs a 
redundant planar skin electrode layout (Fig. 1a,b) that forms a sequence 
of capacitors sensitive to deformations across distal and proximal 
locations, allowing it to detect geometric variations across the entire 
soft body. The C2DT based on self-attention mechanism 22 explores 
the dependency over the e-skin signals and directly translates the 
measurements to the point cloud of the morphology (Fig. 1c). The 
synergistic combination of the SCAS and C2DT can achieve accurate 
(2.322 ± 0.687 mm error on a 20 × 20 × 200 mm soft manipulator) and 
high PGR (3,900; 1,300 points in each point cloud) 3D shape recon-
struction under complex deformations, which is one or two orders 
of magnitude improvement over previous methods (for comparison, 
see Supplementary Table 1). The proposed system does not require 
mathematical modelling of the robot under investigation. Therefore, 
it theoretically should be agnostic to the shape of the soft body and 
has the potential to be extended to soft robotic platforms with an 
unprescribed morphology. This high PGR proprioception capability 
can assist in solving the most fundamental challenges in soft robotics, 
such as precise closed-loop control in complex tasks, thereby facilitat-
ing their widespread adoption.
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information contained in SCAS signals. Given characteristics of electric 
field distribution, we hypothesize that capacitances from different 
electrode pairs convey different geometrical structure information. 
This is critical for the network to effectively distil discriminative pro-
prioceptive representations from capacitance readouts27. We therefore 
design a special position encoding process in the C2DT to generate 
geometrical representations based on positions of individual electrode 
pairs (for more details, see Methods).

We train a C2DT using the virtual proprioception dataset by mini-
mizing the loss function consisting of the squared distance term of 
visual markers (of which point-to-point correspondences are known) 
and the Chamfer distance (CD) term of the remaining points (of which 
point-to-point correspondences are unknown); for details of the loss 
function, visual markers and training, see Methods. The reconstruc-
tion results show superior PGR (that is, 5,148; 1,716 points represent 
the 3D geometry of the robot), accuracy (that is, 1.379 ± 1.048 mm; 

Supplementary Table 2) and are able to capture the whole range of 
complex deformations tested (Fig. 2b, Supplementary Fig. 3 and Sup-
plementary Video 1). We employ four error metrics to quantitatively 
evaluate the performance of C2DT, that is, the average distance (AD), 
the maximal distance (MD), the CD28 and the Hausdorff distance29 (HD); 
for expressions of these metrics, see Methods. We train several C2DTs 
with different hyperparameters and compare their performance to 
determine an optimized network structure. The quantitative results 
are presented in Supplementary Table 2. We find that the C2DT with 
six transformer layers outperforms the other candidates. The AD error 
achieved with this setup is as low as 1.379 ± 1.048 mm, comparable to 
the accuracy achieved with RGB-D cameras frequently used as ground 
truth in the relevant research29.

We implement ablation studies of the C2DT with six transformer 
layers to better understand the role of each loss term and position 
encoding. The results are shown in Fig. 2b, Supplementary Fig. 3 and 
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Fig. 1 | Design of the SCAS and the pipeline for full-geometry, high PGR 3D 
deformation reconstruction of soft robots. a, The entire SCAS that can cover 
the whole soft robot arm consist of multiple SCAS modules. Each module has four 
functional layers, that is, the protective substrate (0.39 mm), the electrode layer 
(0.08 mm), the isolation layer (0.24 mm) and the sealing layer (0.3 mm). The soft 
electrodes are made of CB dispersed elastomers. EGaIn is employed to fabricate 
the wires and interfaces. The multi-position skin electrode combinations 

can form a sequence of capacitors. Geometric variations in the proximity of 
the electrode pair lead to the change in the corresponding capacitance. The 
readout electronics can record capacitance values of a selected set of electrode 
pairs at approximately 30 fps. b, Snapshots of the soft arm in different states 
(undeformed, twisting and the compound deformation of bending and twisting). 
c, Data collected by the readout electronics are fed into a deep net and translated 
to a high PGR representation (point cloud) of the 3D robot shape.
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Fig. 2 | High PGR 3D deformation reconstruction based on the virtual dataset. 
a, The architecture of the C2DT that infers the displacement of each point in the 
source point cloud (without deformation) from the SCAS capacitance readouts. 
In the encoding part, the network encodes the input capacitance readouts and 
the geometrical structure information of electrode pairs to a high-dimensional 
space and feeds them to the transformer encoder to distil proprioceptive 
information. In the decoding part, the network manages to assign a correct 
displacement to each point in the source point cloud based on the output 
sequence of the encoding part. For more implementation and architecture 
details, see Methods. b, A set of examples of reconstructions generated by 

different C2DTs. The colour of each point in reconstructions indicates the 
distance from the corresponding point in the ground truth. The region of interest 
is the middle section in the source point cloud. The points in the region of interest 
(marked in black) should be mapped into the middle section in reconstructions if 
C2DTs learn correct point-to-point correspondences. We can observe apparent 
shifts in the reconstructions of the C2DT w/o markers. c, The performance of 
the C2DT under four different numbers of markers (mean ± standard deviation 
on 7,096 testing samples). d, The performance of the C2DT under four different 
electrode layouts (mean ± standard deviation on 7,096 testing samples).
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Supplementary Table 3. We observe that the C2DT cannot learn correct 
point-to-point correspondences without including visual markers in 
training. This phenomenon is illustrated in Fig. 2b, where the points 
in the region of interest of the source point cloud are not mapped 
into the correct corresponding region using the C2DT without (w/o) 
markers. Although reconstructions show similarities with the ground 
truth by minimizing the CD term, point-to-point errors remain large. 
We also identify that, by retaining only the squared distance term of 
the visual markers during training, local distortions arise in a set of 
frames of reconstructions. This indicates that the CD term can benefit 
the geometrical quality of the reconstructions. Finally, we observe poor 
convergence when attempting to train the network after removing the 
position encoding part. We visualize the position representations of the 
trained C2DT through t-distributed stochastic neighbour embedding 
(t-SNE)30 (Supplementary Fig. 4) and see that, after position encoding, 
the electrode pairs with high geometrical correlation tend to cluster 
together, and the electrode pairs geometrically far apart are also far 
apart in the feature space. It suggests that our position encoder can 
generate distinctive geometric representations based on the locations 
of the input electrode pairs.

The redundant SCAS design validates its feasibility in the virtual 
environment. However, the high density of markers and electrodes 
poses practical challenges to the fabrication and experimentation of 
the physical system. To reduce complexity while maintaining proprio-
ception performance, we investigate the impact of the number of mark-
ers and electrode layout on the performance of the C2DT. The results of 
this analysis, shown in Fig. 2c, prove the accuracy improvement from 
increasing the number of markers plateaus at 16. It provides evidence 
that a small set of markers is sufficient for the C2DT to establish correct 
point-to-point correspondences. Similarly, the reconstruction perfor-
mance improves with the density of electrodes, but the improvement 
is minimal after the number of electrodes exceeds a certain value (for 
example, 32), as illustrated in Fig. 2d. These results highlight a favour-
able trade-off between reconstruction accuracy and electrode/markers 
units, confirming that it is safe to sacrifice a minute part of performance 
to simplify the fabrication and deployment of the SCAS.

Fabrication and characterization of the e-skin
On the basis of the conclusions from the above investigation, we design 
a physical SCAS with 32 electrodes, consisting of eight 4-electrode 
SCAS modules. This design balances the full-geometry reconstruc-
tion performance with fabrication complexity. We fabricate multiple 
four-electrode SCAS modules in parallel using established elastomer 
processing technologies31. The electrodes are made of carbon black 
(CB) dispersed elastomers. However, this material is unsuitable for 
wires and interfaces due to its high resistivity and non-linear, irrevers-
ible conductivity response under deformation32,33. Therefore, eutectic 
gallium (75.5%)-indium (24.5%) (EGaIn) is employed to fabricate the 
wires and interfaces due to its high conductivity (3.4 × 107 S m−1) and 
stable response to deformation. The fabrication process is presented 
step by step in Supplementary Fig. 5a, and additional details regarding 
materials and fabrication are reported in Methods.

The four-electrode SCAS module (20 × 120 mm) consists of four 
different functional layers (Figs. 1a and 3a), that is, the protective 
substrate (thickness 0.39 mm), the electrode layer (0.08 mm), the 
isolation layer (0.24 mm) and the sealing layer (0.3 mm). We engrave 
microchannels for wires (width 0.5 mm) and connections (3 × 2 mm) 
on the isolation layer using a laser machine. Then the sealing layer is 
bonded to the outward surface of the isolation layer. We inject the 
EGaIn ink into the microchannels. The CB electrodes and EGaIn wires 
are connected by vertical interconnect holes. The relative capacitance 
response of a 40% strain ranges from 16% to 19%, depending on the 
activated electrode pairs (the platform for cycling characterization is 
shown in Supplementary Fig. 7a). The response curves show excellent 
linearity and consistency over multiple cycles (more than 500 cycles 

in Supplementary Fig. 7b,c). For comparison, we characterize a SCAS 
with CB wires using the same approach (Supplementary Fig. 7d,e). As 
Fig. 3b illustrates, the SCAS with EGaIn wires is superior to its CB wires 
counterpart in terms of sensitivity (larger responses under the same 
deformations), linearity (no distortions in response curves) and cycling 
stability (does not shift after 500 cycles of stretches).

We uniformly deploy eight four-electrode SCAS modules on the 
surface of a soft manipulator with the size of 20 × 20 × 240 mm (Sup-
plementary Fig. 5b; 40 mm in height for the interface area, that is, 
not reconstructed). The 32-electrode SCAS, consisting of eight SCAS 
modules, connects to an in-house developed data acquisition system34 
to measure capacitance values. We use two oppositely placed RGB-D 
cameras (Azure Kinect) to capture real-time, ground-truth 3D defor-
mations of the robot in the colour point cloud format from two com-
plementary views, and then fuse them in a single coordinate system. 
We dye the sides of the robot arm white as its original transparency 
negatively impacts the quality of data collected by RGB-D cameras. 
Sixteen yellow visual markers are placed to encourage the network to 
learn correct point-to-point correspondences during training (Sup-
plementary Fig. 5c). The experiment platform (Supplementary Fig. 8) 
can synchronously record capacitance and point cloud data at a frame 
rate of around 30 frames per second (fps).

The reliability of the SCAS allows us to record capacitance read-
outs frames (each frame comprises 76 independent readouts) when 
the robot arm is subject to arbitrary external loading applied via the 
bottom holder over a long period (we intermittently collect about 
1,220 seconds (s) of deformation data during a 10 h experiment). To 
demonstrate the superiority of our approach, we implement a random 
sequence of complex deformations, including omnidirectional bend-
ing, omnidirectional elongation, twisting around an arbitrary axis 
and their compound deformations (Fig. 3c), during the experiment. 
In most frames, point clouds collected by cameras cannot represent 
full-geometry 3D deformations due to missing points caused by inevi-
table visual occlusion. We fill points by α shape reconstruction35 for the 
frames with minor missing point issues and directly filter the frames 
that have severe occlusion. Then we obtain a total of 30,973 frames of 
data (for details of data acquisition and pre-processing, see Methods). 
A set of samples in this dataset is shown in Fig. 4a and Supplementary 
Fig. 9.

Real-world high PGR proprioception
The challenge of real-world high PGR proprioception is exacerbated by 
the relatively poor quality of point clouds (restricted by the accuracy 
of cameras, occlusion, light conditions), noise in the SCAS signals, and 
imperfect synchronization between different devices. To compensate 
for these added sources of inaccuracy, we enhance the C2DT framework 
by increasing the number of input frames (Ni adjacent frames of SCAS 
readouts) and introducing a regularization term in its loss function 
to limit the distance change between neighbouring points before and 
after deformation. We train several C2DTs with different input frame 
numbers using the filtered real-world dataset. The full-geometry recon-
struction performance improves as the input frames number increases 
and achieves the minimum error at three adjacent input frames  
(Fig. 4b). This improvement indicates that increasing the number of 
input frames can reduce the negative impacts of noise in SCAS sig-
nals and asynchronization between devices. The temporal correlation 
among adjacent frames can also be considered favourable for defor-
mation reconstruction. A representative set of reconstructions of the 
C2DT with three input frames is shown in Fig. 4c and Supplementary 
Video 2. The results achieve 2.322 ± 0.687 mm for the CD metric (Sup-
plementary Table 4) with the PGR of 3,900 (that is, 1,300 points in each 
point cloud). Compared with simulation results, some elaborate geo-
metrical features of reconstructed deformations in certain frames are 
less obvious, especially for those related to twisting (Supplementary 
Video 3). This is mainly because the ground truth point clouds acquired 
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by RGB-D cameras cannot reach the quality of point clouds synthesized 
by 3D-SECF simulation.

According to the ablation study (Supplementary Fig. 10), visual 
markers play a similar role in physical and virtual environments, facili-
tating the network to learn correct point-to-point correspondences. 
We also observe that adding the neighbour regularization term can 
slightly improve the reconstruction quality (Supplementary Table 4). 
The position encoding part is crucial to extract useful proprioceptive 
information from physical SCAS signals. Similar to its contribution in 
the training with the simulation dataset, position encoding can assign 
discriminative high-dimensional representations to different electrode 
pairs based on their geometrical structures (Supplementary Fig. 11).

Discussion
We presented a proprioception system that could visualize high PGR 
3D full-geometry deformations of soft robots. It is empowered by an 
intrinsically stretchable SCAS that leverages capacitances formed by 
the combinations of planar boundary electrodes and an end-to-end 
neural architecture to translate SCAS signals directly into point clouds. 
While we demonstrated the advancement of this proprioception system 
on complex deformations, several issues remain to be addressed to 
fully exploit its potential.

The SCAS fabrication involves manual operation (for example, 
liquid metal injection, sealing layer attachment, interface to sensing 
electronics), leaving room for performance improvement. Although 
calibration of sensor readouts can, to a certain extent, mitigate this 
issue, a desirable solution would require automated manufacturing 

technologies, such as direct writing of liquid metal and 3D printing of 
soft materials. Furthermore, the thickness of the SCAS is about 1 mm, 
which is suitable for demonstrating high PGR proprioception in our soft 
robot testbed (20 × 20 × 200 mm) and other similar proprioception 
scenarios. However, more advanced fabrication approaches36–38 could 
be adopted to extend the proposed framework to other application 
domains, such as skin-interfaced wearable devices.

While this work focuses on proprioception induced by external 
forces applied to the tip of the robot, real-world operation entails many 
other kinds of stimuli from the environment. These stimuli, in turn, 
may be the source of soft body deformations (for example, compres-
sion) and involve peripheral information (for example, temperature, 
texture). Due to the capacitive nature of SCAS, it can, in principle, 
simultaneously detect several distinct types of external stimuli, such 
as tactile mapping and permittivity of the objects in the proximity of 
the robot. The SCAS signals could be interfered, and the accuracy of 
the shape reconstruction might drop when external stimuli occur. Two 
possible solutions for this issue are envisaged. First, a stretchable con-
ductive layer that is grounded can be integrated to the top of the SCAS, 
shielding the external electrical interference. In addition, sensitivity 
to external stimuli provides an opportunity to measure them. More 
advanced data interpretation algorithms could be developed to decou-
ple deformation and external stimuli information from SCAS signals, 
which however could be highly challenging. Integrating multi-modal 
sensors into the SCAS framework has the potential to alleviate this 
issue and enhance the capability to detect multiple external stimuli 
simultaneously.
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We also point out that the C2DT belongs to the paradigm of 
supervised learning that requires abundant labelled data for training.  
A notorious problem is that the acquisition of labelled data is expen-
sive, time-consuming and in some cases even impossible. For instance, 
point clouds of compression-induced deformations cannot be easily 
collected through vision-based methods due to inevitable occlusion. 
The proposed coupling field simulation can generate a large number 
of high-quality labelled training samples. However, the gap between 
virtual and physical environments leads to performance deterioration 
if the network is trained only on the simulation dataset. Sim-to-real 
transfer learning methods are considered as the potential solution. 
The development and application of sim-to-real approaches suitable 
for soft robot proprioception can substantially increase the value of 
the simulation data and reduce the cost of real-world data acquisition.

Notwithstanding the above limitations, the proposed propri-
oception system can achieve real-time (30 fps), high PGR (3,900) 

full-geometry deformation reconstruction with high accuracy 
(2.322 ± 0.687 mm CD error) under complex deformations. This level 
of proprioception represents a step change over previous attempts and 
is beyond existing proprioception systems. Notably, the system has 
the potential to be extended to different types of soft bodies through a 
straightforward learning process without requiring a priori knowledge. 
Implementing such high PGR, full-geometry proprioception is essen-
tial for perceiving full-body status and achieving precise closed-loop 
control of soft robots, the key to breakthroughs in performing complex 
tasks.

Methods
Solid mechanics and electrostatics coupling field simulation
The coupling field simulation is implemented in COMSOL Multiphysics 
to simultaneously generate virtual SCAS sensing data and deforma-
tion data to demonstrate the effectiveness of the proposed method. 
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Fig. 4 | Real-world high PGR proprioception. a, The curves of calibrated 
capacitance readouts of the SCAS during a period of about 20 s in the 
experiment. Each readout is calibrated as follows: c = (c′ − cemp)/cemp, where c is 
the calibrated capacitance readout, c′ is the original readout and cemp is the 

readout without deformation. b, The performance of C2DTs, which take different 
numbers of adjacent frames as inputs (mean ± standard deviation on 4,262 
testing samples). c, A representative set of examples of high PGR 3D deformation 
reconstruction.
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The object of study is a square soft robot arm made of silicone (length 
100 mm, width 100 mm, height 1,000 mm; Supplementary Fig. 2a). An 
array of 64 electrodes (8 × 8) is placed on the surface of the robot arm 
to form a 64-electrode SCAS. For simplicity, each electrode is set as a 
105 × 30 mm flat surface without thickness. The distance between two 
adjacent electrodes on the same side is 20 mm both horizontally and 
vertically. The distance between each edge and the nearest electrode is 
10 mm. Relevant material properties are set as follows: Young’s modu-
lus E = 4.15 MPa, Poisson’s ratio v = 0.022, density ρ = 1.28 × 103 kg m−3, 
relative permittivity εr = 3.

We implement 956 different episodes in the simulation to produce 
a virtual soft robot proprioception dataset. Each episode mimics a 
time-continuous deformation process and is discretized into about 
40 frames. In each frame, the deformation and the corresponding 
capacitance readouts of the SCAS are recorded. We apply four dif-
ferent types of loads to generate various complex deformations: (1) 
the compound deformation of elongation and twisting L(z, r): a torsion 
force and a pulling force along the z axis are simultaneously applied 
to the tip of the robot arm; (2) pure bending L(x, y): a pulling force in the 
x–y plane is applied on the tip of the arm; (3) two-phase twisting and 
bending Lr,(x, y): A torsion force is applied on the tip of the arm in the 
first r frames (r ranging from 6 to 16), and then a pulling force in the 
x–y plane is applied on the tip while maintaining the twisting state; 
(4) the compound deformation of twisting and bending L(x, y, r): a tor-
sion force and a pulling force in x–y plane are applied to the tip at the 
same time. Each deformation is represented by a 3D point cloud with 
1,716 points. Examples are shown in Supplementary Fig. 3. Since it is 
impractical to ascertain the exact point-to-point correspondences of 
all points between two different deformations in the physical world, we 
resort to a scheme that can be realistically implemented. We select 64 
points as visual markers, whose correspondences are available during 
network training and the correspondences of the remaining points are 
only used in testing for evaluation (Supplementary Fig. 2a).

Theoretically, any two electrodes can form a capacitor. The SCAS 
with 64 electrodes can produce 2,016 independent capacitance read-
outs in each measurement frame. However, many of them are extremely 
small and cannot be reliably measured in the real world. Therefore, only 
capacitances of electrode pairs in the same layer and capacitances of 
certain electrode pairs between two adjacent layers are recorded. Sup-
plementary Fig. 2b shows all 28 electrode pairs in the first layer that form 
measurable independent capacitors. Supplementary Fig. 2c shows all 
24 electrode pairs between the first and second layers that form measur-
able independent capacitors. Following this sensing scheme, the SCAS 
can generate 392 independent capacitance readouts per measurement 
frame. Each readout is calibrated as follows: c = (c′ − cemp)/cemp, where  
c is the calibrated capacitance readout, c′ is the original readout and  
cemp is the readout without deformation. Examples of calibrated capaci-
tance readouts are shown in Supplementary Fig. 3.

A total of 39,334 frames (956 episodes) of deformations and capac-
itance readouts are generated through the coupling field simulation, 
of which 2,319 frames (53 episodes) are with L(z, r); 12,552 frames (300 
episodes) are with L(x, y); 12,269 frames (303 episodes) are with Lr,(x, y); 
and 12,194 frames (300 episodes) are with L(x, y, r).

C2DT for the virtual SCAS
In general, the C2DT is a deep model (Fig. 2a) that is able to deform the 
source point cloud Ps to approximate the target point cloud P based 
on the measurement characteristic tensor (c, QQQe1, QQQe2). Here, PPPs ∈ ℝNp×3 
is the point cloud without deformation; Np is the number of points in 
Ps, which is 1,716 in this case; PPP ∈ ℝNp×3 and P̂PP ∈ ℝNp×3 are the ground  
truth and reconstructed point clouds with a specific deformation, 
respectively; ccc ∈ ℝNm×1 is the corresponding calibrated capacitance 
readouts vector; Nm is the number of readouts in c with the value of 392 
in this case; and QQQe1 ∈ ℝNm×3  and QQQe2 ∈ ℝNm×3  are the coordinates  
of electrodes to generate c.

The C2DT architecture consists of two parts, that is, encoding and 
decoding. The input of the encoding part is c, QQQe1 and QQQe2. QQQe1 and QQQe2 are 
considered as positional signals that can help distinguish different 
elements in c. They pass through the multi-layer perceptron (MLP) fq(⋅) 
to obtain the geometrical representations of individual electrodes. We 
next choose an element-wise max function to integrate the two elec-
trode representations into the final geometrical representations for 
electrode pairs as the capacitance is independent of the order of elec-
trodes according to the reciprocal theorem. The MLP fc(⋅) maps c to 
high-dimensional representations, and the sum of capacitive and 
geometrical representations is the input of the transformer encoder 
E(⋅) with the length of Nm. For the decoding part, Ps is first fed to the 
MLP fs(⋅), and then multi-head attention is implemented over the out-
puts of fs(⋅) and E(⋅) through the transformer decoder D(⋅). The MLP 
fd(⋅) is used to map the output sequence of D(⋅) to the displacement of 
each point, and the reconstruction P̂PP is obtained by adding it to Ps.

P̂PP is expected to be as close as possible to the target point cloud P. 
This goal is achieved by minimizing the following loss function:

ℒ = 𝔼𝔼P∼𝒫𝒫

⎡⎢⎢⎢⎢
⎣

λ1
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(1)

where PPPr ∈ ℝNr×3 represents the remaining points; pppj
r ∈ ℝ3 is the coor-

dinates of the jth remaining point; pppi
v ∈ ℝ3 is the coordinates of the ith 

visual marker; Nv and Nr are the numbers of the visual markers and the 
remaining points, respectively; 𝒫𝒫 is the distribution of P; and λ1 and λ2 
are the weights of the squared distance term of the visual markers and 
the CD term of the remaining points, respectively.

The structures of subnetworks of the C2DT are as follows:

•	 fs: Linear(3, hem) → ReLU → LayerNorm(hem) → Linear(hem, dmodel) 
→ ReLU → LayerNorm(dmodel)

•	 fq: Linear(3, hem) → ReLU → LayerNorm(hem) → Linear(hem, dmodel)
•	 fc: Linear(1,hem) → ReLU → LayerNorm(hem) → Linear(hem, dmodel)
•	 fd: Linear(dmodel, 3) → a × Tanh
•	 E: LayerNorm(dmodel) → Transformer.EncoderLayer(dmodel, dff, h, 

Pdrop) ⊗ ne-layer

•	 D: Transformer.MutualLayer(dmodel, dff, h, Pdrop) ⊗ nm-layer →  
Transformer.DecoderLayer(dmodel, dff, h, Pdrop) ⊗ nd-layer

where hem = 32, dmodel = 128, a = 1.2, dff = 256, h = 8, Pdrop = 0.1, ne-layer = 3, 
nm-layer = 1 and nd-layer = 2. Linear layers in fq and fc do not have learnable 
biases while others have. The LayerNorm in E takes the sum of capacitive 
and geometrical representations as input. Transformer.EncoderLayer 
and Transformer.DecoderLayer are exactly the same with the original 
transformer22. We remove the first self-attention cell of Transformer.
DecoderLayer and use the remaining part as Transformer.MutualLayer 
because Ps remains constant. Transformer.EncoderLayer ⊗ ne-layer rep-
resents a stack of ne-layer Transformer.EncoderLayer.

We split the virtual proprioception dataset into three exclusive 
parts, that is, training, validation and testing sets. The training set 
includes 22,517 frames (548 episodes), of which 1,334 frames (31 epi-
sodes) are with L(z, r), 7,204 frames (172 episodes) are with L(x, y), 6,980 
frames (173 episodes) are with Lr,(x, y) and 6,999 frames (172 episodes) are 
with L(x, y, r). The validation set includes 9,721 frames (236 episodes), of 
which 550 frames (12 episodes) are with L(z, r), 3,093 frames (74 episodes) 
are with L(x, y), 3,098 frames (76 episodes) are with Lr,(x, y) and 2,980 frames 
(74 episodes) are with L(x, y, r). The testing set includes 7,096 frames  
(172 episodes), of which 435 frames (10 episodes) are with L(z, r), 2,255 
frames (54 episodes) are with L(x, y), 2,191 frames (54 episodes) are with 
Lr,(x, y) and 2,215 frames (54 episodes) are with L(x, y, r).

Quantifying the range of deformations can assist in evaluating the 
reconstruction performance. However, it is challenging to character-
ize the range of complex deformations using only several parameters, 
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such as bending angle and/or elongation displacement. Otherwise, a 
low PGR proprioception system would be sufficient to provide accu-
rate geometry reconstruction. Here we characterize the deformation 
range using (1) the range of coordinates of points and (2) the maximum 
displacement of the centroid. In the simulation, the coordinates of 
testing samples are in the range of −724.27 to 728.68 mm in the x direc-
tion, −742.15 to 743.66 mm in the y direction and −728.09 to 487.95 mm 
in the z direction. Note that we set the centroid of the point cloud 
without deformation as the origin. The maximum displacement for 
the centroid is 341.92 mm.

The C2DT is implemented in Python and PyTorch packages39.  
We use the Adam40 optimizer (β1 = 0.9, β2 = 0.98, ϵ = 10−9) to update 
learnable parameters and minimize ℒ. We set the initial learning rate 
of 0.001, which we decay by a factor of 1.2 every 15 epochs. We compute 
λ1 and λ2 as follows: λ1 = λ/3(λNv + 2Nr), λ2 = 1/3(λNv + 2Nr), where 
λ = max(1, 300 − 2 × (epoch − 1)). We clip the gradient with the thres-
hold of 0.5 and train the C2DT using the training set for 300 epochs  
with a batch size of 24. Each epoch takes about 9 min on 3 Nvidia  
Quadro P5000. We save the network with the least validation loss as our 
final model.

We quantitatively evaluate the performance of the C2DT through 
four error metrics, that is, the AD, the MD, the CD and the HD:

AD = 1
Np

Np

∑
i=1

|pppi − p̂ppi|2 (2)

MD = max
i∈[1,Np]

|pppi − p̂ppi|2 (3)

CD = 1
2Np

Np

∑
i=1

(min
ppp∈PPP

|ppp − p̂ppi|2 +min
p̂pp∈P̂PP

|pppi − p̂pp|2) (4)

HD = max (max
p̂pp∈P̂PP

min
ppp∈PPP

|ppp − p̂pp|2,maxppp∈PPP
min
p̂pp∈P̂PP

|ppp − p̂pp|2) (5)

We compare the performance of C2DTs with different hyperpa-
rameters, and the results are presented in Supplementary Table 2. To 
understand the impact of each loss term and position encoding on 
the performance, we also implement ablation studies. We remove the 
squared distance term and the CD term, respectively, and perform the 
same training procedure to obtain results of the C2DT w/o markers and 
the C2DT w/o CD. The reconstructed point clouds and values of these 
metrics are shown in Fig. 2b, Supplementary Fig. 3 and Supplementary 
Table 3. We also try to train the network without the position encoding 
part, but it is unable to converge. The position representations of the 
trained C2DT are visualized through t-SNE30 and presented in Supple-
mentary Fig. 4, which can help discover the geometrical correlation 
among different electrode pairs.

We also investigate the performance of C2DTs with different num-
bers of visual markers and different electrode layouts using the same 
method to guide the sensor and network design in the real world. The 
results are shown in Fig. 2c,d.

SCAS fabrication, characterization and deployment
The 32-electrode SCAS comprises eight modular 4-electrode SCASs. 
Each SCAS module has four different functional layers, that is, the 
protective substrate, the electrode layer, the isolation layer and the 
sealing layer. We fabricate each SCAS module layer by layer. The steps 
are shown in Supplementary Fig. 5a: (1) We mix Smooth-on Ecoflex 
00-30 part A (1.0) and part B (1.0) and pour it on a glass plate. Then 
we use a TQC Sheen micrometre film applicator to flatten the silicone 
and cure it for 3 min at 100 °C. (2) We first mix Imerys Enasco 250P con-
ductive CB (0.2) with isopropyl alcohol (2.0), after which the uncured 
silicone mixture (2.0) is added and we stir them for 3 min. A layer of 
uncured conductive silicone is coated on the protective substrate and 

is cured for 3 min in a 100 °C oven. (3) We use a 40 W Aeon MIRA 5 laser 
machine to pattern CB electrodes. The parameters are set as follows: 
28% power, 300 mm s−1 speed and 0.05 mm interval. The planar size of 
each electrode is 21 × 6 mm, which is one-fifth of the one studied in the 
simulation. (4) We use the same method as in step 1 to fabricate a sili-
cone membrane for the isolation layer on the top of the electrode layer.  
(5) Two rounds of engraving are performed with 20.5% power, 
300 mm s−1 speed and 0.05 mm interval to generate microchannels of 
liquid metal wires and connections to readout electronics. Four rounds 
of engraving are conducted with the same parameters to generate ver-
tical interconnect holes. The planar size of readout connections and 
vertical interconnect holes is 3 × 2 mm, and the width of wires is 0.5 mm. 
Then we cut the rectangular area of the modular SCAS with 19.5% power 
and 25 mm s−1 speed and remove the remaining part. (6) We fabricate a 
new silicone membrane following step 1, and we uniformly coat a very 
thin layer of uncured silicone mixture on its surface as adhesive. Then 
we bond the SCAS cut in step 5 with the membrane. The curing takes 
about 4 h under room temperature to ensure high-quality bonding. 
(7) We inject EGaIn (Sigma Aldrich) ink from readout connections, 
and meanwhile exhaust the air in microchannels through the vertical 
interconnect holes. (8) We obtain the final modular four-electrode 
SCAS. The planar size of the SCAS module is 120 × 20 mm, of which 
100 × 20 mm is the area of the electrodes, and 20 × 20 mm is the 
interface to readout electronics. The layer thicknesses are 0.39 mm, 
0.08 mm, 0.24 mm and 0.3 mm, respectively. Since the fabrication is 
easy to scale up, we manufacture five SCAS modules in parallel.

To characterize the response of the SCAS module and verify the 
superior performance of EGaIn wires compared with CB wires, we 
attach a four-electrode SCAS with CB wires and a four-electrode SCAS 
with EGaIn wires on the front and back sides of a segment of the square 
cylinder silicone structure (20 × 20 × 140 mm) and cyclically stretch 
them using a Nema23 stepper motor with a SFU1605 ball screw (Sup-
plementary Fig. 7a). Each cycle takes 20 s, and the SCASs are strained 
by up to 40%. The entire test takes about 3 h (more than 500 cycles). 
Relative capacitance readouts of each SCAS are illustrated in Supple-
mentary Fig. 7b–e. The results show that the SCAS with EGaIn wires 
has better sensitivity (larger response under the same deformation), 
linearity (no distortions in response curves) and cycling stability (no 
drift after 500 cycles).

We cast a square cylinder robot arm (Ecoflex 00-30) with the size 
of 20 × 20 × 240 mm which is one-fifth of the one in the simulation. The 
extra 40 mm in height is the interface area for driving the deformation, 
connecting to electronics and bonding with the fixed ceiling. We bond 
eight 4-electrode SCAS modules on its surface to form the 32-electrode 
SCAS (Supplementary Fig. 5b). The soft robot and SCAS are fabricated 
with the same material (Ecoflex 00-30), which allows them to be firmly 
merged, with no modulus mismatch, by using uncured Ecoflex 00-30 
silicone as adhesive. The unity of the material enables the robot and 
SCAS to be considered as a whole system during experiments, thus 
minimizing the effect of SCAS on the original robot motion and defor-
mation. Supplementary Fig. 6 shows the adhesion between the SCAS 
and the robot under various deformations. No separation or disloca-
tion was observed in all cases. The transparency of silicone adversely 
impacts the quality of the point clouds collected by RGB-D cameras 
based on the time-of-flight principle. We therefore coat a silicone 
layer with white Smooth-on Silc Pig Silicone Pigments for better reflec-
tion. We also attach 16 yellow dots as visual markers to assist network 
training with correspondence information. We cover the interface to 
readout electronics with black acrylic tape to reduce its interference in 
point cloud collection (Supplementary Fig. 5c). Individual electrodes 
are indexed and accessible from the readout electronics.

Experimental setup
The experiment platform consists of the soft robot arm equipped 
with the 32-electrode SCAS, the readout electronics, two Microsoft 
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Azure Kinect RGB-D cameras41 and a laptop installed with a customized 
software to control the readout electronics and record data from the 
cameras and the SCAS (Supplementary Fig. 8). The readout electronics 
is based on a 32-electrode ECT system that supports arbitrary switch-
ing schemes34. Its capacitance measurement resolution is 3 fF, and the 
signal-to-noise ratio of all 32 channels is above 60 dB.

The two cameras are placed directly opposite and in a straight 
line with the robot arm to capture its 3D deformations from two com-
plementary views in real time. The deformations are saved and repre-
sented via the colour point cloud format. The data recording of the 
cameras and readout electronics is synchronized. The frame rate can 
reach about 30 fps if we only record the point cloud and capacitance 
data. It will decrease to around 20 fps if RGB images are also recorded.

Experimental data acquisition and pre-processing
In real-world experiments, we manually manipulate the hand holder 
bonding to the bottom of the robot arm to induce a variety of complex 
deformations, including omnidirectional bending, twisting around 
an arbitrary axis, omnidirectional elongation and their compound 
deformations (Fig. 3c and Supplementary Fig. 9b,c). Meanwhile, we 
synchronously record the SCAS and camera data (that is, capacitance 
readouts, colour point clouds and sometimes RGB images). We collect 
36,465 frames (about 1,220 s) of experimental data. In this real-world 
dataset, the first 36,013 frames (about 1,200 s) record only the capaci-
tance readouts and colour point clouds; the last 452 frames (about 20 s) 
also save the RGB images with a reduced frame rate.

The 32-electrode SCAS can produce 76 capacitance readouts in a 
single frame, which are calibrated using the same method as in the sim-
ulation. The point clouds from the two cameras are fused in one coordi-
nate system using the chessboard calibration method42,43. The raw data 
are noisy and contain many meaningless background points, making 
them unusable for direct training. We clean and pre-process the data 
using MATLAB to selectively retain only the points on the surface of 
the robot arm. The points on the black acrylic tape and red holders are 
eliminated via colour filtering. To further reduce the negative impact 
of noise and outliers, we filter out regions whose local point densities 
are lower than a pre-set threshold. Due to inevitable visual occlusion, in 
many frames the cleaned point clouds cannot completely represent 3D 
deformations. To alleviate this issue, further pre-processing is required 
before training. We implement average grid downsampling with a 4 mm 
box gird filter at first for computational efficiency. Then we reconstruct 
α shapes 35 on the basis of the downsampled point clouds to alleviate the 
issue of incomplete representation. The triangular meshes of the alpha 
shapes are subdivided three times, and vertexes are extracted as new 
point clouds with supplementary points. In our C2DT framework, the 
numbers of points in the source and target point clouds are expected 
to be the same. To meet this requirement, we first implement average 
grid downsampling with a 4 mm box gird filter and then use farthest 
point sampling44 to eventually select 1,300 points in each point cloud.

We extract yellow visual markers from cleaned point clouds before 
downsampling and α shape reconstruction based on the RGB informa-
tion of each point. We create a graph according to one frame of marker 
points. The connection of each two points in the graph is determined 
by their distance. The threshold of connected distance is 6 mm. Each 
connected subgraph with more than ten points is considered as a visual 
marker, and the average of the coordinates of all points in a subgraph is 
used to represent the marker position. The number of extracted visual 
markers is not always 16 due to camera occlusion. It is almost impos-
sible to automatically obtain point-to-point correspondences of visual 
markers under our current experimental setup. We therefore align 
visual markers layer to layer. The 16 visual markers can be divided into 
four layers, and each layer includes 4 markers. We create a graph based 
on one frame of coordinates of extracted markers with the connected 
distance threshold of 26 mm. Each subgraph is a layer of markers. The 
permutation of the layer is determined by the relative position in the y 

axis of the fused coordinate system among all four layers. We delete all 
abnormal frames for which the number of extracted markers is larger 
than 16 and/or the number of layers is not equal to 4. We fill the layers 
for which the number of markers is less than 4 with (0,0,0) to ensure all 
layers have the same number of points, which can improve the compu-
tational efficiency during training. Furthermore, we remove the frames 
with critically missing points issues because of the low quality of their 
reconstructed α shapes. The number of markers in individual layers 
indicates the severity of missing points. The frames with at least two 
markers in all layers are retained while others are dismissed.

Upon the above filtering process, a total of 30,973 frames of data 
remain available for analysis. We randomly inspect a sample of 500 
frames out of the dataset and do not find serious missing points issues.

C2DT for the physical SCAS
The basic framework of C2DT in the real-world experiment is analogous 
to that in the simulation. However, some modifications are required 
due to the difference between the real and virtual environments. First, 
the loss function in simulation is no longer applicable, as in our experi-
ments the point-to-point correspondences of visual markers are not 
available. Instead, we propose a modified loss function as follows.
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∑
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(6)

The first term of ℒ⋆ counts the CD between the reconstruction and the 
ground truth of markers layer by layer, where PPPlk ∈ ℝNlv×3 is the coordi-
nates of the visual markers in the lk layer; pppi

lk
∈ ℝ3 is the coordinates of 

the ith point in PPPlk; d(p̂ppi
lk ,PPPlk ) is the squared distance between p̂ppi

lk and the 
nearest point in PPPlk; Nl is the number of layers; Nlv is the number of mark-
ers in each layer and the values of Nl and Nlv are 4 in this case. When 
computing the loss, we only need to consider the marker points 
extracted in the data pre-processing and ignore the padding points. 
Note that all points in ̂PPPlk are marker points as they are generated by  
the network based on the corresponding capacitance readouts and the 
source point, which does not include padding points. To eliminate  
the effect of padding points during training, we synthesize masks Sk,ir2g 
and Sk,ir2g as follows.

•	 Sk,ig2r is set to 1 if pppi
lk

 is a marker point. Sk,ig2r is set to 0 if pppi
lk

 is a 
padding point.

•	 Sk,ir2g is set to 1 if PPPlk does not include any padding points, 
otherwise Sk,ir2g is set to 0.

The second term in ℒ⋆ is exactly the same as its simulation counterpart 
that counts the CD between the reconstruction and ground truth  
of the remaining points. The third term is a regularizer that encourages 
the distance between neighbouring points to not change dramatically 
before and after deformations, where p̂ppj,l

r  is the lth neighbour of p̂ppj
r; sj,l 

is the distance between the corresponding two points in the source 
point cloud; δd and δu are coefficients of thresholds. We count the loss 
only if the neighbour distance in the reconstruction falls outside the 
pre-set range. We achieve this with masks Sj,ld  and Sj,lu  as follows.

•	 Sj,ld  is set to 1 if |p̂ppj
r − p̂ppj,l

r |2 − δd ⋅ sj,l < 0, otherwise Sj,ld  is set to 0.
•	 Sj,lu  is set to 1 if |p̂ppj

r − p̂ppj,l
r |2 − δu ⋅ sj,l > 0, otherwise Sj,lu  is set to 0.

The number of input frames in the physical world is not constant to 
1. In contrast, the C2DT takes several (Ni) adjacent frames as its input. 
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The first linear cell in fc is therefore modified to Linear(Ni,hem). The 
hyperparameters of the C2DT are set as: hem = 32, dmodel = 64, dff = 128, 
h = 4, Pdrop = 0.1, ne-layer = 2, nm-layer = 1 and nd-layer = 1. The network is trained 
and evaluated using almost the same procedure as presented earlier.

We split the real-world dataset into three exclusive parts. The first 
26,711 frames (about 1,020 s) are used for training (20,693 frames) and 
validation (6,018 frames), and the last 4,262 frames (about 200 s) are 
used for testing. The coordinates of testing samples are in the range of 
−141.01 to 129.99 mm in the x direction, −98.41 to 190.91 mm in the y 
direction, and −100.28 to 111.73 mm in the z direction (the centroid of 
the point cloud without deformation is set as the origin). The maximum 
displacement for the centroid is 72.38 mm. We set δd = 0.5 and δu = 2. 
We compute λ1, λ2 and λ3 as follows: λ1 = λ/[λ∑Nl

k=1∑
Nlv
i=1(S

k,i
r2g + Sk,ig2r) + 2Nr], 

λ2 = 1/[λ∑
Nl
k=1∑

Nlv
i=1(S

k,i
r2g + Sk,ig2r) + 2Nr]  and λ3 = 1/10[∑

Nr
j=1∑

Nn
l=1(S

k,i
d + Sk,iu )] , 

where λ = max(1, 300 − 10 × (epoch − 1)) . In total, we run 200 epochs 
with a batch size of 39 and retain the network with the least validation 
loss. We implement ablation studies to evaluate the effect of individual 
loss terms (Supplementary Fig. 10) and quantitatively evaluate recon-
structions with CD and HD metrics, which do not require point-to-point 
correspondences (Supplementary Table 4). Finally, we visualize the 
position representations of individual electrode pairs via t-SNE to 
illustrate the geometrical correlation between different capacitance 
readouts (Supplementary Fig. 11).

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
All data are publicly available in Edinburgh DataShare with the identifier 
https://doi.org/10.7488/ds/377345.

Code availability
Codes for the implementation of the C2DT are available in Edinburgh 
DataShare with the identifier https://doi.org/10.7488/ds/377345.
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