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Abstract: The lab-on-a-chip concept, enabled by microfluidic technology, promises the integration
of multiple discrete laboratory techniques into a miniaturised system. Research into microfluidics
has generally focused on the development of individual elements of the total system (often with
relatively limited functionality), without full consideration for integration into a complete fully
optimised and miniaturised system. Typically, the operation of many of the reported lab-on-a-chip
devices is dependent on the support of a laboratory framework. In this paper, a demonstrator
platform for routine laboratory analysis is designed and built, which fully integrates a number of
technologies into a single device with multiple domains such as fluidics, electronics, pneumatics,
hydraulics, and photonics. This facilitates the delivery of breakthroughs in research, by incorporating
all physical requirements into a single device. To highlight this proposed approach, this demonstrator
microsystem acts as a fully integrated biochemical assay reaction system. The resulting design
determines enzyme kinetics in an automated process and combines reservoirs, three-dimensional
fluidic channels, optical sensing, and electronics in a low-cost, low-power and portable package.

Keywords: sensors; fluidics; integration; lab-on-a-chip; integrated devices; miniaturised total analysis
system; optofluidics

1. Introduction

Lab-on-a-chip technologies have focused on miniaturising physical and chemical
processes to enhance the understanding of biochemical systems. This can be achieved
by integrating multiple discrete laboratory processes or techniques into a system that fits
on a chip. The technology is particularly beneficial in the life sciences due to advantages
over conventional laboratory testing, such as low cost due to reduced reagent volumes,
reduced detection times, processing capabilities hundreds of times faster than current
technologies, and high throughput with the parallelisation of processes [1,2]. However, the
capabilities and commercial impact of such devices are often limited due to the additional
bulky peripheral equipment, such as syringe pumps, microscopes, and power supplies,
required for operation [3]. These integral components are often not integrated and omitted
as requirements for scaled systems, limiting lab-on-a-chip technologies to operations within
the laboratory.

Furthermore, routine laboratory analysis takes place in multiple domains (fluidic,
electronic, pneumatic, hydraulic, photonic, etc.) and there has been limited integration of
R&D outputs into total analysis systems. Systems built in the R&D arena which utilise
high levels of integration could enable the delivery of breakthroughs in research, although
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incorporating multiple domains and all physical requirements into a single device remains
a challenge. Manz et al. introduced the term miniaturised (micro) total analysis system, or
µTAS, as a system that comprises a channel network wherein the channels have micrometre-
scale dimensions, can be fabricated into or from a solid substrate, integrates multiple
discrete laboratory functions on a single chip, and where the fluid flow in a microstructure
is a required element of the analytical or preparative function of the device [4]. The authors
outlined the scaling potential and benefits of miniaturising such systems. The term µTAS
is less associated with devices nowadays and instead represents miniaturised systems for
chemistry and life sciences through a popular conference of the same name. It should also
be noted that total analysis systems are now in high demand for emerging technologies
such as organ-on-a-chip [5–7]; a concept which has recently gained significant popularity
among researchers.

This paper reports such a miniaturised, fluidic total analysis system used as a demon-
strator platform. It details the design, fabrication, and operation of a single unit, automated
device integrating several domains for measuring enzyme kinetics. The system integrates
reservoirs, three-dimensional (3D) fluidic channels, sensing, and electronics in a low-cost,
low-power, and portable package. The fluidics were fabricated using rapid prototyping
techniques and following a modular development approach of key components that can be
readily modified or adapted for use with other fluidic systems.

2. Background

Research on microfluidics has primarily focused on the development of components
such as microvalves [8–11], mixers [12–14], and micropumps [15–18]. However, there are
also notable fluidic devices. Sauer-Budge et al. demonstrated a complex fluidic network
cartridge to identify bacterial pathogens in clinical samples [19]. The device could prepare
different samples (urine, blood, and stool) for a polymerase chain reaction. However, this
passive cartridge required a large (although single unit) tool to perform the analysis. Schu-
macher et al. demonstrated a complex integrated lab-on-a-chip with multiple capabilities
and a user interface [20]. Components such as pumps, reservoirs, analysis chambers, and
electrochemical sensors were integrated into a single device with fluidic and electrical
interfaces. The fluidic components were fabricated with cycloolefin copolymer via mould
injection, and the electronics included silicon-based sensors on a standard printed circuit
board (PCB). Brassard et al. developed a centrifugal microfluidic platform with active pneu-
matic pumping for the integration and automation of sample preparation processes [21].
This was demonstrated by extracting nucleic acids from whole blood.

Microfluidics have taken advantage of a plethora of pre-existing fabrication tech-
nologies. The development of soft lithography by Duffy et al. [22] has helped to expand
the field. This method is inserted into an already established framework of cleanroom
microfabrication, using standard photolithographic techniques and wafer processing tech-
nologies. Scaled and mass production reduce typically significant upfront costs. Many
devices fabricated in cleanroom facilities have lacked the integration of all the key equip-
ment necessary for operation, although more recently Wang et al. used soft lithography to
fabricate a lab-on-chip device for rapid nitrate determination, which was based on double
microstructured assisted reactors [23].

By successively removing layers from a material, micromilling offers an alternative so-
lution for fabricating fluidic networks. Metals, ceramics, and polymers are typical materials
with chemical and temperature tolerances required for microfluidic devices. For example,
Chen et al. used a high-speed spindle to fabricate fluidic devices in polycarbonate with an
average wall roughness of 0.15 µm ± 0.08 µm [24]. Yen et al. demonstrated that microma-
chining can offer a cost-effective platform for the rapid prototyping of microdevices [25].
More recently, Lashkaripour et al. optimised the fabrication of microfluidic devices on
polycarbonate using a low-cost desktop micromilling tool [26]. Patterns of reduced surface
roughness with feature sizes as small as 75 µm were demonstrated.
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Paper microfluidics is a low-cost technology, where channels are patterned on paper
using a number of methods [27,28]. One such method is wax printing where the wax is
melted and infuses through the paper to create hydrophobic barriers. Using this approach,
fluidic devices can be designed and fabricated in minutes [29]. Low-cost and biodegrad-
able materials are key factors for producing single-use devices, such as for blood sample
analysis. Laser cutting is a further option [30,31]. For example, a capillary network with
consistent channel depths was engraved on 2 mm thick acrylic, in order to study bub-
ble lodgement in industrial and biological processes [32]. This complex capillary system
mimicked physiological vascular networks with rectangular channels between 0.26 and
0.52 mm.

Briefly, 3D printing enables the rapid prototyping of complex fluidic devices [33,34].
For example, Kitson et al. fabricated chemical reactors with 800 µm channels, which
were printed in polypropylene by fused deposition modelling (FDM) [35]. Anderson
et al. [36] used stereolithography printing to fabricate a microfluidic device that also
incorporated threaded ports for connecting to syringe pumps and cavities for cell culture
inserts. The device included an array of eight channels, 3 mm wide and 1.5 mm deep.
Similarly, Shallan et al. [37] produced a series of low-cost, complex 3D microfluidic devices,
including a 3D mixer, a gradient generator, a droplet generator and a tool to analyse nitrates
in tap water (the smallest fluidic channels were 500 × 500 µm).

Furthermore, 3D printing can also be combined with lost core methods. A nega-
tive mould of a fluidic network is printed, encased in a material such as epoxy or poly-
dimethylsiloxane (PDMS) and subsequently removed, leaving a void. Therriault et al.
developed such a method to create complex 3D structures in epoxy [38]. A matrix of
channels 10–250 µm was initially printed using fugitive organic ink. This was then encased
in epoxy and heated to 60 ◦C, melting the ink and creating the fluidic network. The network
was filled with a photocurable resin, which was selectively cured using a set of photomasks,
resulting in a complex chaotic mixer. Although the method allowed for channels as small
as 10 µm, the design capabilities of the fabrication method are limited. A simpler lost
core-based fabrication technique has been previously described by the authors of this
paper [39]. Briefly, acrylonitrile butadiene styrene (ABS) is used as the material to FDM
print the sacrificial mould of a complex 3D fluidic network, which is then encased in PDMS
and finally immersed in an acetone bath. When placed in contact with acetone, ABS will
dissolve. By taking advantage of the swelling properties of PDMS in solvents [40], any
ABS embedded in PDMS is liquefied before being washed away, thus leaving a void corre-
sponding to the designed fluidic network. Using a similar fabrication technique, Saggiomo
et al. [41] demonstrated that electronics could be incorporated into a fluidic device before
being encased in PDMS. The fabrication of the fluidics presented in this paper follows the
lost core methodology developed in [39].

3. Materials and Methods
3.1. Enzyme Kinetics Analysis

To demonstrate the operation and capabilities of the proposed demonstrator fluidic
device, a robust and inexpensive assay has been selected [42]. The selected enzyme,
although well-characterised, retains clinical relevance, and the measurement of activity
is typically included in routine blood work. In the presence of alkaline phosphatases
(phosphatase, alkaline from bovine intestinal mucosa, Sigma-Aldrich) the reaction results
in the transformation (by hydrolysis) of the colourless synthetic substrate, p-nitrophenyl
phosphate (PNPP Substrate, Thermo Fisher Scientific) into a yellow-coloured product,
p-nitrophenol. This provides the opportunity to integrate optical colour detection into
the system.

The reaction mechanism is described by:

E + S 
 ES→ E + P (1)
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where an enzyme (E) and a substrate (S) are mixed to facilitate an enzyme–substrate
complex (ES) that needs to be formed before the reaction can take place to form the product
(P) and released by the free enzyme (E). Enzyme kinetics analysis is performed using the
Michaelis–Menten model, which relates reaction rate or velocity (v) to the concentration of
substrate ([S]) through:

v =
Vmax [S]
Km + [S]

(2)

where Vmax is the maximum reaction velocity at maximum (saturating) [S] and Km is the
Michaelis–Menten constant, equal to [S] at which the reaction rate is half of Vmax.

For the described assay, the initial reaction rate is seen as a colour change in the mixture.
Spectrophotometry in conjunction with Beer–Lambert’s law allows the determination of
the reaction rates through the measurement of initial rates of change in light absorbance for
a number of known sample concentrations (enzyme and substrate). This in turn enables
Km to be determined.

This type of experiment is typically operated in many laboratories and requires the
availability of external commercial equipment. The concentration of the substrate is manu-
ally varied using pipettes into multi-well plates while keeping the enzyme concentration
constant. Thus, the accuracy of the results often depends on the skill of the operator.
The procedure is ideal for automation, with such an automated sample preparation setup
previously reported [43]. In summary, the analysis can be broken down into several steps,
which are detailed below:

1. Change the concentration of the substrate;
2. Measure the change in light absorbance by the solution;
3. Determine the initial reaction rate;
4. Repeat (1)–(3) for different substrate concentrations;
5. Plot reaction rates versus substrate concentrations and determine Km.

3.2. Device Requirements and Architecture

The proposed miniaturised total analysis system should be automated, fully integrated
(or not require external equipment), as accurate as commercially available equipment,
compact and battery powered (to allow in situ operation), and finally, as low cost as possible.
A key element of the device is the preparation of fluids for absorbance measurement. There
are many options for the automated handling and preparation of fluids, such as fluid-
handling robots, digital or pressure-driven fluidic systems, and microfluidic platforms
using syringe pumps. A viable option, amenable to miniaturisation, is a pressure-driven
fluidic system. p-Nitrophenol shows a peak in absorption at 407 nm for solutions with
pH > 7 [44]. The sensor needs to detect a change in intensity at this wavelength with
an accuracy of 5%. In addition, the sensor has to be in contact with the sample as this
eliminates any light absorption or interference from the surrounding material.

The proposed device comprises a fluidic layer, where the solution is prepared and
then optically measured, and a control layer, which contains the control circuitry of the
system. Figure 1 shows a schematic of the device architecture, detailing all the components
and their interconnections.

The components of the pressure-driven fluidic system are:

• Two reservoirs;
• Two active restrictors for controlling the flow rate from the reservoirs;
• A T-junction where the outputs following the restricted fluidic channels merge;
• A mixer;
• An analysis chamber, combined with a light source and an optical sensor for determin-

ing the initial reaction rate;
• Inlet/outlet ports;
• Interconnections.
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Components can be active or passive. Fluids are driven from the reservoirs via
the fluidic layer of Figure 1 using a pump to apply negative pressure, with waste being
directed out of the system through an outlet port. The flow rate from each reservoir is
controlled by restricting the diameter of the channels, thereby facilitating the use of different
concentrations of p-nitrophenyl phosphate. The operating pressure range of the valves
has to be greater than the pressure generated by the pump and the stiffness of the PDMS
between the pressure chamber and the fluidic channel.
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The size of the reservoirs is determined by the diameter and length of the fluidic
components and the interconnecting channels, as well as the total number of experiments
desired. The mixer ensures that the solutions are thoroughly mixed, but the enzymatic
reaction must take place at the sensing component. Low pressures across the system can
induce laminar flow, which is undesirable. For effective mixing, the mixer should promote
turbulent behaviour. The diameter, cross-sectional topology and inner surface roughness of
the interconnecting channels also determine the fluid dynamics.

The control layer provides a means for the automated operation of the fluidic device.
It consists of an electronic circuit that powers and interacts with the device and a graphical
user interface (GUI) that interacts with the user.

The electronic circuit uses a microcontroller unit (MCU) for acquiring data from the
sensor, controlling the operational pressure of the two restrictive valves and moving the
solutions through the fluidic device. Four solenoid valves are required for the operation
of the two restrictive valves: two to direct the airflow to the pressure chambers, a third to
vent the network to atmospheric pressure, and a fourth, with the addition of a restriction,
to gradually reduce the pressure in the network for fine control. A pressure sensor is also
required to control the restriction level of the fluidic channels.

The GUI enables the user to input the parameters of the experiment. These include the
initial concentrations of the solutions present in the reservoirs, all the desired combinations
of mixing ratios between the two solutions, and finally, the duration of the photometric
measurement. The data are then collected and analysed to determine the enzyme kinetics.

Once the system operation has been verified, full system automation in a single-
unit system for use outside the laboratory simply requires the control scripts, desired
experimental procedures, and parameters to be programmed directly to the MCU, thus
eliminating the GUI and the computer. In such a case, user interaction would be much
more constrained.

3.3. Design and Fabrication of the Fluidic Module

Figure 2a shows the layout of the computer-aided design (CAD) for the sacrificial
fluidic mould (CAD available in the supplementary material). The reservoirs were sized
as 20 × 25 mm (height × diameter) cylinders with a 1.5 mm (diameter) outlet channel at
their base. This provides storage for adequate sample volumes for the anticipated number
of experiments. The active restrictors were designed as proportional pneumatic valves
consisting of a 1.5 mm diameter, 10 mm-long fluidic channel, flanked by two bridged
semi-cylindrical air chambers of 5 mm diameter and 10 mm length. Both air chambers are
connected via a single 1.5 mm diameter pressure inlet channel for control. The 3D CAD of
the design can be seen in Figure 2b. By increasing the air pressure in the chamber, the PDMS
moves towards the fluidic channel from both sides, reducing its cross-section. Further
increasing the pressure will eventually fully obstruct the channel. A compact chaotic flow
mixer was designed, based on six vertically oriented vesica piscis-shaped fluidic channels,
each 3 mm high, 0.8 mm wide, and 10 mm long. The shift from a standard cylindrical
channel to the described shape aims to assist with inducing a turbulent flow. To further
promote a disturbed fluid flow and thus improve the mixing efficiency, the neighbouring
modules have a 90◦ vertical rotational misalignment with each other. The design of the full
mixer is presented in Figure 2c. The fluidic ports (outlet shown in Figure 2c) were designed
as truncated cones (4 and 5 mm in diameter) with the larger diameter connecting to the
external tubing.

The photometric sensor consists of a 3 × 3 × 1.5 mm analysis chamber (Figure 2c),
a light emitting diode (LED), and a phototransistor placed on the opposite sides of the
analysis chamber. A 400 nm LED (LED3-UV-400-300, BivarOpto) was selected as the best
alternative to an optimal 407 nm light source. A visible light phototransistor (TEPT4400,
Vishay, Malvern, PA, USA) with sufficient spectral sensitivity at 400 nm, was chosen as the
photodetector (bill of materials available in the supplemental material).
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Figure 2. (a) Layout of the CAD for the sacrificial fluidic network; (b) 3D CAD of the proportional
pneumatic valves (c) 3D CAD of the chaotic mixer; (d) 3D printed sacrificial mould, post acetone
surface treatment with the LED and phototransistor attached; (c) PDMS fabricated fluidic device, with
added fluidic interconnects to the control layer and waste reservoir; (d) the final device, integrating
fluidics with the PCB and casing containing the battery, pumps, and valve system; (e) plan view of
the fluidic device showing the pneumatic valve control tubes (left) and the liquid waste output tube
(right), (f) photograph of the full system, filled with blue liquid to help visualise the liquid flow-path.

Figure 2d shows the ABS 3D-printed sacrificial mould, with the LED and phototran-
sistor attached. Prior to component attachment, the mould was first sprayed with acetone
and quickly dried with compressed air to smooth the surface. FDM printing yields parts
with rough surfaces, which are unsuitable for achieving an efficient fluidic flow [39]. Both
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the LED and the phototransistor were protected by an opaque thermoplastic material
and attached to the analysis chamber, with the acetone-soluble dicyanoacrylate. The pho-
tometric sensor was then encapsulated with 5 g of PDMS, which had been mixed with
Silc Pig blue silicone pigment (Smooth-On) and cured in a convection oven at 60 ◦C for
30 min. This, compounded with the thermoplastic, ensures that no ambient light can reach
the phototransistor and introduce measurement artefacts. Furthermore, it reduces light
scattering interference from the LED that is not travelling through the analysis chamber
and could otherwise reduce the sensitivity of the measurement or overwhelm the signal.

To fabricate the fluidic module, 50 g of Sylgard 184 (DowDuPont, Wilmington, DE,
USA) with a ratio of 25:1 (base to catalyst) was prepared and then degassed. The rec-
ommended ratio by the manufacturer is 10:1. However, the stiffness of the PDMS was
reduced [45,46] to allow the operation of the proportional valve with lower pressures,
prolonging the lifetime of the device. The mould was filled with PDMS and placed in an
oven at 60 ◦C for 2 h. Once cured, the device was immersed in an acetone bath for 72 h
before flushing the liquified ABS. The device was then placed in a fume hood for 48 h to
allow the acetone in the PDMS to evaporate. Finally, Sil-Poxy (Smooth-On, Inc., Macungie,
PA, USA) was used to glue 4 mm silicone tubes to the ports of the device, one for the
liquid output and one for controlling each pneumatic valve. Figure 2e shows the fabricated
fluidic device.

3.4. Design and Fabrication of the Control Module

The fluidic module is controlled by an ATmega328P MCU (Microchip) integrated
on a custom PCB, which was designed and fabricated in-house. The MCU drives the
four solenoid valves, a piston air pump, as well as reading data from a digital gauge
pressure sensor (SSCDANN015PG2A3, Honeywell, Charlotte, NC, USA). This in turn
controls the pressure in the pneumatic valves, providing variable liquid channel restriction.
Furthermore, it drives a peristaltic liquid pump, which is used for flowing and mixing
liquids during an experiment or for a cleaning protocol. Finally, the MCU provides power to
the LED and reads the output voltage from the phototransistor. An FTDI FT232R transceiver
is used for data communication between the MCU and a computer via micro-USB. The
selected options enable the use of Arduino libraries for Matlab. Power is provided via a
6 V NiMH 1300 mAh rechargeable battery, or alternatively, the PCB includes a DC power
socket. The bill of materials and schematics of the PCB are available in the supplemental
material. The fluidic module is positioned on top of the PCB with connections for the LED
and the phototransistor, as well as through holes for the silicone tubing. Figure 2f shows
the final miniaturised total analysis system, with the output fluidic tubing going through
the PCB into the encased hardware compartment containing the pumps and solenoids.

A Matlab-based GUI was designed to provide the user with partial control of the
device, as well as to deliver a high level of automation. The user inputs the required
parameters for performing an enzymatic analysis. The parameters are detailed in Section 3.2.
A complementary GUI has also been designed for the calibration of the pneumatic valves.
The Matlab script associated with the experimental GUI uses the calibration data to adjust
the pressure in the appropriate pneumatic valve and prepare the sample for measurement.
It then retrieves the data from the photometric sensor, which can be exported for analysis.

4. Results and Discussion
4.1. Device Calibration

The device was calibrated by first characterising the photometric sensor and extracting
a calibration curve, which was then used to characterise the pneumatic valves. Reference
solutions of known original product concentration, and where the reaction had already
occurred, were used.

The photometric sensor was calibrated by having a solution of known product con-
centration in the analysis chamber and then applying 5 V to the LED. Both the LED and
the phototransistor are coupled with resistors that control the light intensity and output
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voltage linear range, respectively. The output voltage of the phototransistor was recorded
every 100 ms for 30 s, and the mean value was calculated. This process was repeated by
reducing the concentration via double dilution with a 500 mM Tris, 10 mM MgCl2 buffer
(pH of 8.0) and until the output voltage matched this of a blank reading (buffer only).
Product concentrations varied from 450 µM down to 0.9 µM. To maximise the sensor’s
sensitivity and accurately measure the enzyme reaction rates across the widest possible
range of concentrations, a number of resistors were tested during the development of the
LED (68 Ω, 150 Ω, 220 Ω, 330 Ω, and 390 Ω) and the phototransistor (10 kΩ, 22 kΩ, 27 kΩ,
and 33 kΩ). The sensor’s largest linear output voltage range of 2.152 V for concentrations
between 250 µM and 0.9 µM, was observed when using a resistor of 150 Ω for the LED and
27 kΩ for the phototransistor. Using these resistor values, a calibration curve was extracted
by taking five sets of measurements on 13 evenly distributed concentrations in addition to
a blank reading. The sensor’s limit of detection (LOD) was then calculated using:

LOD = xb + 3× sb (3)

where xb is the mean of the blank and sb is the standard deviation of the blank. For this work,
xb = 0.048 V and sb = 0.005 V, with a calculated LOD of 0.063 V, corresponding to 0.6 µM
of p-nitrophenol. Figure 3a shows the calibration curve, whereas Table 1 summarises
the sensor characteristics. The raw data for the sensor calibration are available in the
supplementary material.
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Figure 3. (a) Calibration curve of the photometric sensor showing a linear increase in output voltage
with increased product concentration. (b) Calibration curve of the two pneumatic valves. The voltage
readings were taken for different pressures applied in each active valve after the mixture of the two
reservoirs was pumped in the analysis chamber.

Table 1. The sensor characteristics extracted from the calibration curve in Figure 3a.

Range Sensitivity Limit of Detection

0.6–250 µM 8.978 mV/µM 0.6 µM

The calibration procedure for the pneumatic valves first involved filling reservoir 1
with 250 µM solution and reservoir 2 with a buffer. By operating the fluid pump for 2 s,
the fluids were then mixed and transferred into the analysis chamber, prior to recording
the output voltage of the calibrated photometric sensor. This was repeated with valve
1 (and similarly valve 2) pressurised at 17 mbar (5% of the pressure sensor range) and
then incrementally in 17 mbar steps until the valve was fully shut at 155 mbar. The full
procedure was repeated four times for both valves, and the mean values were extracted and
plotted as calibration curves presented in Figure 3b. This enabled the correlation of channel
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flow rates and the pressure applied to the valves, and as can be seen, the valves behaved in
a nonlinear manner. When the applied pressure is below 30 mbar there is no significant
change in output voltage within the expected measurement error of the photometric sensor.
The fluidic pump generates up to 600 mbar of suction pressure; therefore, 30 mbar of
pressure at the valve is not sufficient to noticeably alter the flow.

4.2. Device Performance

To perform the enzyme kinetic analysis, reservoirs 1 and 2 were first filled with the
substrate and enzyme solutions respectively. Six concentrations of substrate were used for
the analysis ranging from 1390 µM to 40 µM, with the desired values entered via the GUI.
The solution with the highest concentration of substrate can greatly exceed the range of the
photometric sensor, as only initial reaction rates are necessary for the analysis. The Matlab
script then retrieved the calibration data and pressurised the pneumatic valves according
to the input parameters using the air pump. The liquid pump was then activated, and it
successfully mixed and transferred the solutions into the analysis chamber. Measurements
were taken for 300 s, and the output voltage from the photometric sensor was recorded every
100 ms. The data were then stored, and the script repeated the process for all substrate
concentrations. All measurements were taken at room temperature. For subsequent
measurements and in order to avoid the build-up of residuals through the channels and
the detection chamber, the reservoirs were filled with isopropyl alcohol, which was then
pumped through the device. This flushing protocol was typically repeated three times.

Figure 4a presents the obtained reaction progress curves as they were read and trans-
mitted by the device to the GUI through the Matlab code, taken at varying initial substrate
concentrations. The linear response of the photometric sensor enables the initial reaction
rates to be determined without requiring a complex interpolation, thus simplifying the
data analysis. The Matlab code calculated the initial reaction rate for each concentration
of substrate, based on the initial slope (25 s) of the presented curves. Figure 4b presents
the initial reaction rates plotted against substrate concentrations, with a curve fitted using
a Michaelis–Menten fitting parameter. The enzyme kinetic value was determined to be
Km = (58 ± 4) µM, which is consistent with the value of 60 µM reported previously [42,47].
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Figure 4. (a) Continuous measurement showing the output voltage of the photometric sensor over a
period of 300 s. The graph displays the reaction rate for the six different concentrations of substrate
used to perform the enzyme kinetics analysis. (b) Enzyme kinetics analysis using the Michaelis–
Menten model, with Km = 58 µM ± 4 µM.

4.3. Discussion

The device integrates pneumatics, fluidics, optics, and electronics. The fluidic module
is 86 × 63 × 24 mm. The device is 109 × 74 × 88 mm, weighs 450 g, and includes a 105 g
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battery. The air pump and two solenoids are operated for up to 20 s while pressurising
the pneumatic valves, whereas the liquid pump is operated for 2 s to flow the solutions
through the mixer and into the analysis chamber. The device requires 35 mAh to perform
the enzyme kinetics analysis. The power for the electronics, including the FTDI chip, MCU,
pressure sensor and passive components, is supplied by the computer running the Matlab
code. The rest of the components, pumps, and solenoids are powered by the battery, which
allows for 58 h of continuous operation. Due to the small form factor, battery operation,
and laptop connectivity, the device is suited for operation outside the lab environment.

For reference, the same enzymatic analysis was performed using a commercial Synergy
HTX Multi-Mode Reader, where it was determined that Km = 80 µM ± 30 µM. The enzyme
and substrate were mixed manually in a multi-well plate prior to loading the samples into
the reader. This procedure could be problematic for time-critical enzyme kinetics, which
may require upgrading the reader with non-standard dual injector modules that enable fast
inject and read operations. The cost, size, and weight of a standard commercial absorbance
microplate reader are considerably increased [48] in comparison to the presented fluidic
system. However, it should be noted that a comparison between the devices would
normally require an analysis of the full set of specifications. For example, commercial
devices often offer temperature control, which is not the case for the presented device. This
may be considered a limitation of the current system (although the system is compact and
may be set up in a temperature-controlled box), as the rate of the enzymatic reaction could
be influenced by possible temperature fluctuations during the time of analysis. However,
with minor design modifications, a heater module with a temperature sensor could be
integrated into the device and allow for temperature control. Nevertheless, the low cost,
ease of manufacture, demonstrated accuracy, and ability for in situ operation, make the
presented device a sufficient, and for some applications, desirable alternative to existing
devices. Finally, it should be noted that a fully integrated and automated platform would
also benefit from integrating artificial intelligence-assisted analysis into the system [49,50].
This is becoming increasingly important (e.g., biochemical analysis) and ultimately a
desirable feature of such a system.

5. Conclusions

This paper presented the design, fabrication, and operation of a fully integrated
miniaturised fluidic system. The device includes a pneumatic domain, an optic domain,
a fluidic domain, and embedded electronics. With the addition of a custom control PCB
and low-cost pumps, an enzyme kinetics analysis was demonstrated without requiring
a dedicated lab, moving towards an autonomous lab-on-a-chip. The device was capable
of producing accurate kinetic parameters for a well-characterised established biochemical
assay. The system is low-cost, low-power, compact, and entirely portable for ad hoc use.

The fluidics of the device were fabricated using rapid prototyping techniques and are
based on components which can be designed, modified, and characterised independently.
This modular approach allows for easy adaptions in new designs and will allow to easily
and rapidly create new fluidic devices that can perform a range of experiments.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/mi14030537/s1, Eagle files and BOM for the PCB, STL file of the mould of the fluidic device,
raw data for the device’s calibration and raw data for the device comparative analysis with the
plate reader.
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