
PeriSim: A Simulator for Optimizing Peristaltic Table
Control

Ross M. McKenzie, Jamie O. Roberts, Mohammed E. Sayed, and Adam A. Stokes*

Peristaltic conveyance can be used for the sorting and transport of delicate and
nonrigid objects such as meat or soft fruit. The non-linearity and stochastic
behavior of peristaltic systems make them difficult to control. Optimizing con-
trollers using machine learning represents a promising path to effective peri-
staltic control but currently, there is no suitable simulated model of a peristaltic
table in which to run these optimizations. A simple, simulated model of a
peristaltic conveyor that can be used for optimizing peristaltic control on a variety
of peristaltic tables is presented. This simulator is demonstrated through a
limited control problem evaluated on our real-world system that is built for
peristaltic conveyance. This simulator is available as the python package PeriSim
so that it can be used by the robotics community for peristaltic control
development.

1. Introduction

1.1. Peristaltic Motion Can be Used to Sort Delicate and Soft
Objects

Peristaltic tables consist of a number of shape-changing cells that
connect to form a deformable 3D surface.[1] These cells are actu-
ated linearly to deform the surface allowing for the automated
control of gradients across the surface, as shown in Figure 1.
Objects that slide or roll can be moved by keeping the gradient
at the position of the object biased in the direction of desired
travel. This control is usually achieved through a wave-like
pattern of cell actuation called a peristaltic wave. A number of
hardware implementations of peristaltic systems have already

been created and used for simple tasks.[2–6]

The interest in peristaltic motion comes
from the limitations of existing 2D convey-
ance systems seen in the industry.
Industrial 2D conveyance relies on rollers
or wheels that push against rigid, flat
surfaces[7,8] and is not suitable for soft,
slippery, or round objects. These objects
can be manipulated with peristaltic motion,
allowing for the automation of new areas
such as offal harvesting.[1]

A major barrier to the adoption of peri-
staltic systems in industry is in their con-
trol. Peristaltic waves are challenging to
control because they are nonlinear, tempo-
ral combinations of the movements of
multiple cells within the table.[9] The effect
of the waves on objects is also highly depen-

dent on the physical characteristics, velocity, and orientation of
the objects. The non-linearity of the surface to object interactions
makes it difficult to accurately predict the precise effect that a
passing peristaltic wave will have on an object.

1.2. Peristaltic Control Can be Optimized in Simulation

Stommel and Xu presented a probabilistic automaton for high-
level peristaltic control.[9,10] Their peristaltic probabilistic autom-
aton uses input from the sensors of the table to determine a state
and has a number of high-level wave patterns as actions. The
probabilistic result of each state-action pair is determined through
multiple trial runs of the system. This approach is independent of
the hardware of the system and the object being manipulated,
which makes it widely applicable. This approach requires a sim-
ulated model of the system as the state-action space can be very
large and can take a prohibitive amount of time to explore.

The probabilistic automata approach requires that high-level
actions are determined in advance to reduce the size of the
state-action space. These high-level actions can be seen as a sub-
set of the larger problem of peristaltic control as they have the
same challenges in modeling caused by the nonlinear nature
of peristaltic motion. Optimizing these actions provides a foun-
dation for higher-level control and can provide valuable lessons
for optimization at this higher level.

Probabilistic automaton control has been demonstrated on an
inverse caterpillar motion table by Deng et al.[11] This table moves
an object by lifting it with deformable cells and then moving the
point of contact between the cell and the object in the plane of the
table. As this type of motion does not rely on objects rolling or
sliding, simulations of this table will be mechanically simpler
and less stochastic than a simulation of peristaltic motion.

R. M. McKenzie, J. O. Roberts, Dr. M. E. Sayed, Dr. A. A. Stokes
School of Engineering
Institute for Integrated Micro and Nano Systems
Scottish Microelectronics Centre
The University of Edinburgh
Alexander Crum Brown Road, King’s Buildings, Edinburgh EH9 3FF, UK
E-mail: adam.stokes@ed.ac.uk

R. M. McKenzie, J. O. Roberts
EPSRC CDT in Robotics and Autonomous Systems
Edinburgh Centre for Robotics
Edinburgh, UK

The ORCID identification number(s) for the author(s) of this article
can be found under https://doi.org/10.1002/aisy.201900070.

© 2019 The Authors. Published by WILEY-VCH Verlag GmbH& Co. KGaA,
Weinheim. This is an open access article under the terms of the Creative
Commons Attribution License, which permits use, distribution and
reproduction in any medium, provided the original work is properly cited.

DOI: 10.1002/aisy.201900070

FULL PAPER
www.advintellsyst.com

Adv. Intell. Syst. 2019, 1900070 1900070 (1 of 9) © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

mailto:adam.stokes@ed.ac.uk
https://doi.org/10.1002/aisy.201900070
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.advintellsyst.com

1.3. Genetic Algorithms Are Ideal for Optimizing Peristaltic
Waves

A basic high-level action for a peristaltic table is a single, constant
amplitude wave. These waves are created through a series of cells
executing a cyclic motion with a delay between their start times.
This delay can be the same, for a constant velocity wave, or dif-
ferent to have a wave with acceleration. The exact series of delays
to best move an object is highly dependent on the object and peri-
staltic table hardware. Genetic algorithms have been used
successfully for optimizing both high-level[12] and low-level[13]

robotic behavior. Cheney et al. demonstrated that genetic
algorithms can successfully harness soft material properties to
produce effective behavior.[14] This work suggests that a genetic
algorithm approach could work for optimizing peristaltic control
due to the shared theme of independent, nonrigid components
operating together to produce useful work. Genetic algorithms
present a simple optimization method to test the feasibility of
optimized peristaltic control. This optimization will require a sim-
ulated peristaltic table to explore the state space in a reasonable
time. This simulation would be imperfect as the nonlinear nature
of the system that creates the need for probabilistic automaton
control also makes modeling the system in simulation difficult.

1.4. Radical Envelope of Noise to Overcome the Reality Gap

Optimizations will often exploit aspects of a simulation that are
different or missing in the real world.[15] Examples of aspects that
often change when moved to the real world include minor vari-
ance in actions that are perfectly repeatable in simulation, the
frictional behavior of sliding surfaces changing from the simu-
lated model, or internal computation, taking time rather than
being “instant” as in the simulation. The lack of, or difference
between, these elements can cause reduced performance when
that system is used in the real world. This effect is called “the
reality gap.” The reality gap can be reduced by learning an offset
from simulation to the real world.[16,17] It is also possible to
design a system in such a way that a small section of it can
be trained in the real world to overcome the differences.[18]

These methods offer a more directed approach to close the reality
gap; however, they require major modifications to the genetic
algorithm approach.

The reality gap can also be narrowed through altering the
simulation itself. Adding noise to sensor data and uncertainty
to the results of actions in a simulation makes controllers
that are optimized in that simulation more robust in the real
world.[15] However, choosing the correct level of noise is

Figure 1. Simulated peristaltic tables. a) A 2D peristaltic table capable of moving an object in the plane of the table. b) The simulated 1D peristaltic
conveyor used to optimize peristaltic waves for conveying the object from one end of the conveyor to the other in as short a time as possible.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2019, 1900070 1900070 (2 of 9) © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

http://www.advancedsciencenews.com
http://www.advintellsyst.com

necessary for this approach and it still requires a well-validated
simulation to work.

An improvement on noisy simulations is to design a simulator
around the radical envelope-of-noise hypothesis.[19] This hypoth-
esis requires that each simulation parameter or aspect is
randomly varied between each simulation run. By randomly
changing the parameters that control the dynamics of our
simulations between runs, we can create controllers that are
robust to changes in the underlying behavior of their reality.
These controllers can, therefore, be optimized in a simplistic
simulator and still work in the real world. The simulator we
use must still model all of the key features of the task and system
we optimize but can be less complex and rely on less real-world
validation.

2. Experimental Section

2.1. Simulation of a Peristaltic Table

2.1.1. Modeling Peristaltic Cells and Objects on the Table

Wemodeled a peristaltic table as a flexible and extensible surface
in the horizontal (XY) plane that was vertically (Z) perturbed by
peristaltic cells. Each peristaltic cell was modeled as a Gaussian
disturbance on the surface. The amplitude of the Gaussian was
determined by the height of the cell. The effect that a peristaltic
cell (p) has on the height (h) of the surface at the position of each
piece of cargo is

hp ¼ Ae�
ð~c�~bpÞ2

2σ2 (1)

where A is the height of the peristaltic cell,~bp is the XY position
vector of the peristaltic cell, and~c is the XY position vector of the
cargo. The term σ is a constant controlling the width of the effect
from each peristaltic cell and is the same for all cells. We chose to
refer to σ as the standard deviation as it contributes to the shape
of the Gaussian disturbance of the cell in the same way that the
standard deviation contributes to the shape of a normal probabil-
ity distribution.

From Equation (1), the effect that each of the peristaltic cells
has on the gradient at the position of an object on the surface is

dhp
d~c

¼ �
�
~c�~bp

�
σ2

Ae�
ð~c�~bpÞ2

2σ2 (2)

The total gradient at the position of an object is a sum over all
of the peristaltic cells.

The magnitude of the vertical force applied between the cargo
object and the surface (Fv) is

Fv ¼ �ðmg þ FactÞ (3)

where m is the mass of the object, g is the strength of gravity in
the simulator, and Fact is the magnitude of the force produced by
actuating peristaltic cells beneath the object. The value of Fact is 0
in all cases other than when the nearest cell to the object actuated
within the last tact seconds. The term tact represents the duration
of a movement between the actuation states of a cell and is a
constant.

The vector angle between the gradient of the surface and the
horizontal in the XZ and YZ planes (~θ) can be calculated as

~θ ¼ tan�1

�X
p

dhp
d~c

�
(4)

Geometrically, the angle between the vertical force and the line
normal to the plane of the surface is equal to ~θ, shown in
Figure 2. The magnitude of the reaction force of the surface
on the object in XZ and YZ planes (~Fr) is equal and opposite
to the component of the vertical force acting normal to the
surface in those planes. Therefore, using Equation (1),

~Fr ¼ ðmg þ FactÞ cosð~θÞ (5)

Geometrically, the angle between the reaction force and verti-
cal is also equal to~θ, shown in Figure 2 The acceleration of the
object in the horizontal plane (~a) can be calculated in an element-
wise manner using

~ai ¼
~Fri sinð~θiÞ

m
�D~vi (6)

where D is the constant drag factor and~v is the velocity of the
object.

Each simulation step proceeds in the following order: For each
object, 1) calculate the gradient at the position of the object;
2) calculate the acceleration; 3) add one timestep of acceleration
to the velocity; 4) add one timestep of velocity to the position.

The objects in our simulator were modeled as point masses
and as such, their physical volumes did not interact with the sur-
face or with other objects. This behavior is suitable for modeling
other peristaltic tables as from our research into peristaltic table
development (see Section 1.1); most systems do not rely on

Figure 2. Schematic of an object on the surface of a peristaltic table.
The term θ is the angle between the gradient of the surface and horizontal,
Fv is the vertical force applied between the cargo object and the surface,
and Fr is the reaction force of the surface on the object.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2019, 1900070 1900070 (3 of 9) © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

http://www.advancedsciencenews.com
http://www.advintellsyst.com

object-surface interactions other than moving along gradients
and do not intentionally bring multiple objects into contact with
each other. Our simulator used PyTorch tensors for most of the
calculations it performed. PyTorch is a deep-learning python
library that provides access to high-performance tensor opera-
tions.[20] The PyTorch tensors we used in our simulator could
contain information about all the objects or cells on the table,
allowing calculations involving every cell and every object to
be completed with one-tensor operation without looping over
variables.

While the default values of the parameters of the simulator
were tuned to model the hardware we used for testing, the param-
eters were easy to access and change. Other peristaltic table
researchers can tune these parameters to model their own sys-
tems in our simulator without needing to change the source code.

2.1.2. Radical Envelope of Noise

We implemented the radical envelope of noise in this simulator
by a perturbing every base parameter randomly at the beginning
of each simulation run. For simulation run (i), a parameter (ωi)
has a default value (ω0) and a range around that default value in
which it may lie in each simulation. We referred to this range as
the noise level (N). At the start of each simulation run, each
parameter was calculated such that

ωi ¼ ω0 þ rNω0 (7)

where r is a random number picked from a uniform distribution
between �1 and 1. The noise level therefore could have a signifi-
cant effect on the behavior of the simulation created at each run.

2.2. Design of the Peristaltic Conveyor

To test our simulation, we designed a peristaltic conveyor based
on Linbot actuators and in a similar design to our previously dem-
onstrated peristaltic conveyor.[6] Linbots are modular robots that
function as the cells in a peristaltic system. They are capable of
actuating linearly, tactile sensing, and communicating with one
another. To test our simulator, we arranged nine Linbots in a row
to make a one dimensional peristaltic table, or peristaltic con-
veyor. We enclosed the conveyor with walls on both sides to stop
objects from falling off. We used a sheet of acetate on top of
the cells for the surface of our peristaltic conveyor. The experi-
mental setup is detailed in Figure 3. We then created a model
of the conveyor in our simulator with a 9�1 array of peristaltic
cells and tuned the parameters of the cells to match the behavior
of Linbots. We used the same control architecture for the simu-
lated model and real-world system. This architecture is detailed
in Section 2.3.1

2.2.1. Simulator Calibration with Real-World Data

We set the parameters of the simulator to match our real-world
system. As the simulator is designed to be simplistic, it uses param-
eters that do not have direct real-world versions or that cannot be
easily measured, such as the standard deviation of the Gaussians
modeling the peristaltic cells. To set these values, we compared the
behavior of simulation runs against the real-world experiments.

We ran our real-world system with an identical known delay
for each Linbot and filmed the results. We used a circle detection
algorithm from OpenCV[21] to track the position and velocity of

Figure 3. System overview. A) A side view schematic of the experimental setup. B) The peristaltic conveyor during an experiment.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2019, 1900070 1900070 (4 of 9) © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

http://www.advancedsciencenews.com
http://www.advintellsyst.com

the ball and compared the results to those of the same experi-
ment in the simulator. We then calibrated the parameters of
the simulator to produce the most realistic results possible.
The simulator runs still showed unrealistic effects caused by
the simplicity of the simulator, but the results were close enough
to allow us to optimize robust controllers.

2.3. Design of the Control

2.3.1. Genetic Controller

We designed a state machine controller that has an identical
structure for each peristaltic cell but each has an individual

control variable. The nine control variables were stored in a
genetic code that is used to define a collective wide controller.
Each variable was between zero and one. Each variable
described the time, in seconds, that the respective peristaltic
cell will remain in a contracted or extended state. The position
of a gene describing the delay of a peristaltic cell in the genetic
code was determined by the position of the corresponding cell
in the conveyor. The state machine for each cell and the related
extensions are shown in Figure 4. A simulated model using
this controller to create a constant velocity peristaltic wave is
shown in Video S1, Supporting Information. The control
variables used in Video S1, Supporting Information, are all
equal to 0.3.

Figure 4. System overview. A) A schematic showing the state machine controller for each peristaltic cell with delays related to the genetic code. Unlabeled
links represent “else” actions. B) The extension of the peristaltic cell in each state.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2019, 1900070 1900070 (5 of 9) © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

http://www.advancedsciencenews.com
http://www.advintellsyst.com

2.3.2. Optimizing the Controller

We generated a population of random genetic codes to use as
controllers for the simulated conveyor. Each time a controller
was run a fitness value was calculated and stored. During the
optimization process, the fitness of each controller was averaged
over ten runs in a simulation.

The fitness (f) is calculated using

f ¼ �xmin � 2t (8)

where t is the time taken for the task to finish with a maximum of
10 s, and xmin is the minimum distance to the end of the con-
veyor reached during the test; these variables are clarified in
Figure 5A. We doubled t to increase evolutionary competition
in more successful controllers, see below.

We optimized the fitness of the controllers via a genetic algo-
rithm approach in simulation. We used a genetic algorithm
closely aligned with previous approaches,[22] which is demon-
strated in Figure 5B. A population of controllers was randomly
created and tested. We then created a new population based
on members of the previous population. The probability of a con-
troller being selected to be used for the creation of a member of
the next generation is proportional to the relative fitness of the
controller compared with the rest of the population. Once cho-
sen, the selected controller underwent a crossover with a differ-
ent controller selected with the same rule. The two resulting
controllers then had a small chance for each gene to be mutated
to create a new genetic code used for a controller in the next
generation. Crossovers split the codes of two parent controllers
and then created a child code by combining the first section of
one parent code with the second of another and vice versa for a
second child code. Mutations involved changing the value of one
or more randomly selected genes in a child code within a small
envelope (<0.1).

During testing, we discovered that controllers that only moved
the object a short distance along the conveyor had large xmin val-
ues compared to the maximum value of t. This large difference
led to more successful controllers having small differences in
relative fitness when compared to the minimum fitness value
of the population. This narrowing of comparative fitness values
reduced the selection pressure on successful controllers and
reduced the exploitation of different successful strategies. We
rectified this imbalance by doubling t in our fitness calculations.

For our optimization, we used 50 generations with a popula-
tion of 1000 per generation.

2.4. Sampling from Noise Levels

Building higher levels of noise into the parameters of a simulator
led to the optimization of controllers to work for a wider range of
different parameters, making them more likely to work when
moved to real-world robotic system. These controllers, however,
could not exploit their environment to complete a task as much
as if lower noise levels were used in the simulator. This trade-off
means that controllers from a variety of noise levels need to be
sampled to find the best controller. These noise levels were a per-
centage by which each base parameter could be perturbed at each
simulation run and that the acceleration of the object could be

perturbed in each simulation timestep. We varied the noise levels
from 0% to 50% in steps of 5%.

2.5. Design of the Physical Experiments to Evaluate the
Optimized Controllers

To determine the best real-world controller, we tested the best
controllers from each optimization. We selected the top five
controllers from each optimization and programmed the control
variables into our peristaltic conveyor. We then tested each
selected controller by placing a ball on the right-hand half of
the first cell and recording the resulting peristaltic conveyance.
We calculated the fitness of each controller using Equation (7)
We repeated the test ten times for each selected controller
and averaged the measured fitness values.

The data collected during the experiment was in the form of
videos and so we needed to extract the necessary features using
computer vision. We developed a tool to evaluate the peristaltic
controllers using Python with OpenCV and AprilTag libraries.[23]

The AprilTags served as the static and reliable start and finish
positions with which to evaluate each peristaltic conveyance.
We placed the AprilTags above the first and last cells of the sys-
tem. AprilTag detection is robust, reliable, and is handled by the
supporting libraries. We used the OpenCV implementation of
the Hough Circle detector[24] to detect the ball in each frame.
We tuned the Hough Circle detector parameters for each video
via an interactive script that saved manual changes in parameters
to file. We later used the parameters in an automated script for
controller evaluation. We developed our evaluation tool to be able
to detect when a run is finished, classify whether the run is a
success, and record the time and distance information from each
run. A screenshot of our evaluation tool is shown in Figure 5A.

3. Results and Discussion

3.1. Using PeriSim

We made our simulator available as a python package called
PeriSim, which can be installed via pip install perisim.
Full instructions and the source code are available at: https://
github.com/stokesresearchgroup/perisim. PeriSim provides a
python object that stores the state of a peristaltic table and cal-
culates the next state. The user provides variables for the initial
state of the system and controls the system via writing a control-
ler object or by using the PeriSim object functions to control
the cells and updates. PeriSim can also create 3D visualizations
of the simulator state via mlab;[25] examples are shown in
Figure 1 mlab is a python script interface of the scientific data
visualization application Mayavi.[26] These visualizations can be
created from one-function call and changed between static and
animated via function arguments.

3.2. Performance of the Optimized Controller

We successfully used our PeriSim package to optimize a peristal-
tic wave controller on the simulated model, shown in Figure 1B.
The optimized controller successfully conveyed a ball across the
real-world test system in all ten runs. This controller was evolved

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2019, 1900070 1900070 (6 of 9) © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

https://github.com/stokesresearchgroup/perisim
https://github.com/stokesresearchgroup/perisim
http://www.advancedsciencenews.com
http://www.advintellsyst.com

with PeriSim set to a 35% noise level and has an average convey-
ance time of 1.8 s and so an average fitness of �1.8. The three
controllers with the highest real-world fitness are detailed in
Table 1 along with the controller that produced the lowest aver-
age conveyance time in successful runs. Video S2, Supporting
Information, shows the controller with the highest fitness
being used on the peristaltic conveyor. Video S2, Supporting

Information, shows how the control variables are optimized such
that the wave pushes the object effectively off the edge.

There were perturbances in the starting position of the ball as
well as a chaotic interaction between the ball, the surface, and the
sides of the conveyor. These random factors led to every real-
world run behaving differently and we did not include them
in PeriSim. The performance of the evolved controllers, despite

Figure 5. Schematic of genetic algorithm approach. A) A screenshot of data gathering software with annotated information about fitness, f, where
f ¼ �xmin � 2t. The term t is the time taken for the task to finish with a maximum of 10 s, and xmin is the minimum distance to the end of the conveyor
reached during the test. B) A diagram of a single optimization step of the genetic algorithm. The probability that a genetic code is selected to create part of
the next generation is proportional to the fitness of the controller based on the code.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2019, 1900070 1900070 (7 of 9) © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

http://www.advancedsciencenews.com
http://www.advintellsyst.com

these random factors, shows that the controllers are robust to
effects that were not explicitly modeled in the simulator.

3.3. Scope for Development

3.3.1. Using PeriSim to Optimize 2D Peristaltic Conveyance

Our simulator can be used for optimizing 2D peristaltic behav-
ior. The degree to which real-world perturbances can disturb the
controller will be increased, and it is likely that a different level of
noise will be optimal for evolving a controller.

3.3.2. Object Volumes and Shapes

PeriSim can be extended to better model real-world effects.
These effects could include the objects no longer being modeled
as point masses but instead as masses with a volume that can
interact with one another. Improving our simulator in this
way also opens up the chance to have objects with different
shapes that have more complex interactions with the surface
medium. The extension to different shapes will allow for testing
that objects can be moved by an existing peristaltic system or aid
with the design of new peristaltic systems by modeling the gra-
dients that will be required to roll or slide the objects the system
is being designed for. Modeling this extra factor will increase the
computational power used by our simulator and so will need to
be important to the task being modeled.

3.3.3. Vibrational Sorting

The effect of high-frequency actuation on objects could be added
to PeriSim. This would require adding firmness and density
characteristics to objects and approximating the effect that these
values have when an object is moved down a vibrating slope.
Modeling high-frequency actuations will allow for vibrational
sorting within PeriSim.

4. Conclusions

Peristaltic tables represent a promising area of research in
advanced intelligent systems for the sorting of soft and delicate
objects. The control of these tables remains a challenge due to
each table being made of a large number of soft, stretchy cells.
Machine learning represents an opportunity to create controllers
for peristaltic tables, but simulated environments are necessary

for the optimization of these controllers. We presented a novel
simulator, PeriSim, that models the fundamental behavior of a
peristaltic table using tensor-based mathematics. We used a rad-
ical envelope of noise to account for the inherent differences
between simulators and the real world when optimizing control-
lers in PeriSim.

We demonstrated the use of PeriSim for an optimization task
using genetic algorithms. This optimization required a large
number of simulations to produce optimal results, which was
facilitated by PeriSim only modeling fundamental aspects of a
peristaltic table. The optimized controller works in the real world
despite the simplicity of our simulator.

PeriSim will be of use to anyone exploring the use of peristaltic
sorting or conveyance. The radical envelope of noise we used in
our simulator will help others produce real-world optimized
controllers while avoiding a large reality gap.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.

Acknowledgements
This study was supported by the EPSRC via the Robotarium Capital
Equipment, and CDT Capital Equipment Grants (EP/L016834/1), and
the University of Edinburgh and Heriot-Watt University CDT in
Robotics and Autonomous Systems. A.A.S. acknowledges the support
from the EPSRC ORCA Hub (EP/R026173/1).

Conflict of Interest
The authors declare no conflict of interest.

Keywords
object conveyance, modular robotics, peristaltic systems, sorting

Received: July 3, 2019
Revised: September 18, 2019

Published online:

[1] M. Stommel, W. L. Xu, P. P. K. Lim, B. Kadmiry, in Robot Intelligence
Technology and Applications 3: Results from the 3rd International
Conference on Robot Intelligence Technology and Applications, (Eds:
J. Kim, W. Yang, J. Jo, P. Sincak, H. Myung, Springer International
Publishing, Cham 2015, pp. 605–615.

[2] S.-R. Kim, D.-Y. Lee, J.-S. Koh, K.-J. Cho, in 2016 IEEE Int. Conf.
Robotics Automation, IEEE, Piscataway, NJ 2016.

[3] A. A. Stanley, A. M. Okamura, IEEE Trans. Haptics, 2015, 8, 20.
[4] P. Schoessler, D. Windham, D. Leithinger, S. Follmer, H. Ishii, in The

ACM Symp. User Interface Software Technology, Charlotte, NC, USA
2015.

[5] R. Hashem, B. Smith, D. Browne, W. Xu, M. Stommel, in IEEE 14th
Int. Workshop Advanced Motion Control, IEEE, Piscataway, NJ 2016.

[6] R. M. McKenzie, M. E. Sayed, M. P. Nemitz, B. W. Flynn, A. A. Stokes,
Soft Robotics, 2019, 6, 195.

Table 1. The three selected controllers with the highest fitness (") and the
controller with the lowest average time of successful runs (#). The value of
interest for each controller is highlighted in bold.

Simulation
noise [%]

Simulation
fitness

Real-world
fitness

Average time for
successful runs [s]

Successful run
proportion [%]

35 �5.25 �3.61 " 1.80 100

35 �5.22 �4.42 " 2.21 100

10 �4.74 �28.8 " 1.66 90

30 �4.62 �127.2 1.23 # 50

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2019, 1900070 1900070 (8 of 9) © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

http://www.advancedsciencenews.com
http://www.advintellsyst.com

[7] C. Uriarte, H. Thamer, M. Freitag, K.-D. Thoben, Logistics J.: Proc.
2016, https://doi.org/10.2195/lj_Proc_uriarte_de_201605_01.

[8] Intralox, Activated Roller Belt (ARB), 2019.
[9] M. Stommel, W. L. Xu, in IEEE Int. Conf. Mechatronics, IEEE,

Piscataway, NJ 2015.
[10] M. Stommel, W. Xu, IEEE Trans. Autom. Sci. Eng. 2016, 13, 858
[11] Z. Deng, M. Stommel, W. Xu, IEEE/ASME Trans. Mechatron. 2016,

21, 1702.
[12] T. W. Manikas, K. Ashenayi, R. L. Wainwright, IEEE Instrum. Meas.

Mag. 2007, 10, 26.
[13] E. Yoshida, S. Murata, A. Kamimura, K. Tomita, H. Kurokawa,

S. Kokaji, J. Robot. Mechatron. 2003, 15, 227.
[14] N. Cheney, R. MacCurdy, J. Clune, H. Lipson, in Proc. Genetic

Evolutionary Computation Conf., 2013.
[15] N. Jakobi, P. Husbands, I. Harvey, presented at Proc.

Third European Conf. Artificial Life, Granada, Spain, June, 1995.
[16] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, R. Webb, in

IEEE Conf. Computer Vision Pattern Recognition, IEEE, Piscataway, NJ
2016.

[17] P. Abbeel, M. Quigley, A. Y. Ng, Proc. 23rd Int. Conf. Machine Learning,
ACM, New York, NY, 2006.

[18] K. Bousmalis, G. Trigeorgis, N. Silberman, D. Krishnan, D. Erhan,
Domain Separation Networks, Proc. 30th Int. Conf. Neural
Information Processing Systems, Barcelona, Spain 2016.

[19] N. Jakobi, Adapt. Behav. 1997, 6, 325.
[20] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,

A. Desmaison, L. Antiga and A. Lerer, 31st Conf. Neural Information
Processing Systems, Long Beach, CA, USA 2017.

[21] G. Bradski, Dr. Dobb’s J. Softw. Tools 2000, 120, 122.
[22] K.-F. Man, W. K.-S. Tang, S. Kwong, IEEE Trans. Industr. Electron.

1996, 43, 519.
[23] J. Wang, E. Olson, in Proc. IEEE/RSJ Int. Conf. Intelligent Robots

Systems, IEEE, Piscataway, NJ 2016.
[24] J. Illingworth, J. Kittler, IEEE Trans. Pattern Anal. Mach. Intell. 1987, 9, 690.
[25] Mayavi, mlab: Python scripting for 3D plotting, Mayavi, [Online].

https://docs.enthought.com/mayavi/mayavi/mlab.html. (accessed:
September 2019).

[26] P. Ramachandran, G. Varoquaux, Comput. Sci. Eng. 2011, 13, 40.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2019, 1900070 1900070 (9 of 9) © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

https://doi.org/10.2195/lj_Proc_uriarte_de_201605_01
https://docs.enthought.com/mayavi/mayavi/mlab.html
http://www.advancedsciencenews.com
http://www.advintellsyst.com

	PeriSim: A Simulator for Optimizing Peristaltic Table Control
	1. Introduction
	1.1. Peristaltic Motion Can be Used to Sort Delicate and Soft Objects
	1.2. Peristaltic Control Can be Optimized in Simulation
	1.3. Genetic Algorithms Are Ideal for Optimizing Peristaltic Waves
	1.4. Radical Envelope of Noise to Overcome the Reality Gap

	2. Experimental Section
	2.1. Simulation of a Peristaltic Table
	2.1.1. Modeling Peristaltic Cells and Objects on the Table
	2.1.2. Radical Envelope of Noise

	2.2. Design of the Peristaltic Conveyor
	2.2.1. Simulator Calibration with Real-World Data

	2.3. Design of the Control
	2.3.1. Genetic Controller
	2.3.2. Optimizing the Controller

	2.4. Sampling from Noise Levels
	2.5. Design of the Physical Experiments to Evaluate the Optimized Controllers

	3. Results and Discussion
	3.1. Using PeriSim
	3.2. Performance of the Optimized Controller
	3.3. Scope for Development
	3.3.1. Using PeriSim to Optimize 2D Peristaltic Conveyance
	3.3.2. Object Volumes and Shapes
	3.3.3. Vibrational Sorting

	4. Conclusions

